Abstract
Based on the previously introduced Quantum-behaved Particle Swarm Optimization (QPSO), a revised QPSO with Gaussian disturbance on the mean best position of the swarm is proposed. The reason for the introduction of this novel method is that the disturbance can effectively prevent the stagnation of the particles and therefore make them escape the local optima and sub-optima more easily. Before proposing the Revised QPSO (RQPSO), we introduce the origin and the development of the original PSO and QPSO. To evaluate the performance of the new method, the Revised QPSO, along with QPSO and Standard PSO, is tested on several well-known benchmark functions. The experimental results show that the Revised QPSO has better performance than QPSO and Standard PSO generally.
Chapter PDF
Similar content being viewed by others
Keywords
References
Angeline, P.J.: Using Selection to Improve Particle Swarm Optimization. In: Proc. 1998 IEEE International Conference on Evolutionary Computation, pp. 84–89 (1998)
Van den Bergh, F.: An Analysis of Particle Swarm Optimizers. PhD Thesis. University of Pretoria, South Africa (2001)
Clerc, M.: The Swarm and Queen: Towards a Deterministic and Adaptive Particle Swarm Optimization. In: Proc. 1999 Congress on Evolutionary Computation, pp. 1951–1957 (1999)
Clerc, M., Kennedy, J.: The Particle Swarm: Explosion, Stability, and Convergence in a Multi-dimensional Complex Space. IEEE Transactions on Evolutionary Computation 6(1), 58–73 (2002)
Eberhart, R.C., Shi, Y.: Comparison between Genetic Algorithm and Particle Swarm Optimization. In: Porto, V.W., Waagen, D. (eds.) EP 1998. LNCS, vol. 1447, pp. 611–616. Springer, Heidelberg (1998)
Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor (1975)
Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: Proc. IEEE 1995 International Conference on Neural Networks, IV, pp. 1942–1948 (1995)
Kennedy, J.: Small worlds and Mega-minds: Effects of Neighborhood Topology on Particle Swarm Performance. In: Proc. 1999 Congress on Evolutionary Computation, pp. 1931–1938 (1999)
Suganthan, P.N.: Particle Swarm Optimizer with Neighborhood Operator. In: Proc. 1999 Congress on Evolutionary Computation, pp. 1958–1962 (1999)
Sun, J., Feng, B., Xu, W.-B.: Particle Swarm Optimization with Particles Having Quantum Behavior. In: Proc. 2004 Congress on Evolutionary Computation, pp. 325–331 (2004)
Sun, J., Xu, W.-B., Feng, B.: A Global Search Strategy of Quantum-behaved Particle Swarm Optimization. In: Proc. 2004 IEEE Conference on Cybernetics and Intelligent Systems, Singapore, pp. 111–115 (2004)
Sun, J., Xu, W.-B., Feng, B.: Adaptive Parameter Control for Quantum-behaved Particle Swarm Optimization on Individual Level. In: Proc. 2005 IEEE International Conference on Systems, Man and Cybernetics, pp. 3049–3054 (2005)
Shi, Y., Eberhart, R.: Empirical Study of Particle Swarm Optimization. In: Proc. 1999 Congress on Evolutionary Computation, pp. 1945–1950 (1999)
Shi, Y., Eberhart, R.C.: A Modified Particle Swarm. In: Proc. 1998 IEEE International Conference on Evolutionary Computation, pp. 69–73 (1998)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Sun, J., Lai, C.H., Xu, W., Ding, Y., Chai, Z. (2007). A Modified Quantum-Behaved Particle Swarm Optimization. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds) Computational Science – ICCS 2007. ICCS 2007. Lecture Notes in Computer Science, vol 4487. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72584-8_38
Download citation
DOI: https://doi.org/10.1007/978-3-540-72584-8_38
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72583-1
Online ISBN: 978-3-540-72584-8
eBook Packages: Computer ScienceComputer Science (R0)