Abstract
The importance of multi-objective optimization is globably established nowadays. Furthermore, a great part of real-world problems are subject to uncertainties due to, e.g., noisy or approximated fitness function(s), varying parameters or dynamic environments. Moreover, although evolutionary algorithms are commonly used to solve multi-objective problems on the one hand and to solve stochastic problems on the other hand, very few approaches combine simultaneously these two aspects. Thus, flow-shop scheduling problems are generally studied in a single-objective deterministic way whereas they are, by nature, multi-objective and are subjected to a wide range of uncertainties. However, these two features have never been investigated at the same time.
In this paper, we present and adopt a proactive stochastic approach where processing times are represented by random variables. Then, we propose several multi-objective methods that are able to handle any type of probability distribution. Finally, we experiment these methods on a stochastic bi-objective flow-shop problem.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Babbar, M., Lakshmikantha, A., Goldberg, D.E.: A Modified NSGA-II to Solve Noisy Multiobjective Problems. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 21–27. Springer, Heidelberg (2003)
Basseur, M., Zitzler, E.: Handling Uncertainty in Indicator-Based Multiobjective Optimization. International Journal of Computational Intelligence Research 2(3), 255–272 (2006)
Cunningham, A.A., Dutta, S.K.: Scheduling jobs with exponentially distributed processing times on two machines of a flow shop. Naval Research Logistics Quarterly 16, 69–81 (1973)
Dauzère-Pérès, S., Castagliola, P., Lahlou, C.: Niveau de service en ordonnancement stochastique. In: Billaut, J.-C., et al. (eds.) Flexibilité et robustesse en ordonnancement, pp. 97–113. Hermès, Paris (2004)
Deb, K., Gupta, H.: Searching for Robust Pareto-Optimal Solutions in Multi-Objective Optimization. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 150–164. Springer, Heidelberg (2005)
Dudek, R.A., Panwalkar, S.S., Smith, M.L.: The Lessons of Flowshop Scheduling Research. Operations Research 40(1), 7–13 (1992)
Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization and Approximation in Deterministic Sequencing and Scheduling: A Survey. Annals of Discrete Mathematics 5, 287–326 (1979)
Hughes, E.J.: Evolutionary Multi-Objective Ranking with Uncertainty and Noise. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 329–343. Springer, Heidelberg (2001)
Ishibuchi, H., Murata, T.: A Multi-Objective Genetic Local Search Algorithm and Its Application to Flowshop Scheduling. IEEE Transactions on Systems, Man and Cybernetics 28, 392–403 (1998)
Jin, Y., Branke, J.: Evolutionary Optimization in Uncertain Environments - A Survey. IEEE Transactions on Evolutionary Computation 9, 303–317 (2005)
Keijzer, M., Merelo, J.J., Romero, G., Schoenauer, M.: Evolving Objects: A General Purpose Evolutionary Computation Library. In: Collet, P., Fonlupt, C., Hao, J.-K., Lutton, E., Schoenauer, M. (eds.) EA 2001. LNCS, vol. 2310, pp. 231–244. Springer, Heidelberg (2002)
Kouvelis, P., Daniels, R.L., Vairaktarakis, G.: Robust scheduling of a two-machine flow shop with uncertain processing times. IIE Transactions 32(5), 421–432 (2000)
Ku, P.S., Niu, S.C.: On Johnson’s Two-Machine Flow Shop with Random Processing Times. Operations Research 34, 130–136 (1986)
Landa Silva, J.D., Burke, E.K., Petrovic, S.: An Introduction to Multiobjective Metaheuristics for Scheduling and Timetabling. In: Gandibleux, X., et al. (eds.) Metaheuristics for Multiobjective Optimisation. Lecture Notes in Economics and Mathematical Systems, vol. 535, pp. 91–129. Springer, Berlin (2004)
Meunier, H., Talbi, E.-G., Reininger, P.: A multiobjective genetic algorithm for radio network optimization. In: Proc. of the 2000 Congress on Evolutionary Computation (CEC’00), pp. 317–324. IEEE Computer Society Press, Los Alamitos (2000)
T’kindt, V., Billaut, J.-C.: Multicriteria Scheduling - Theory, Models and Algorithms. Springer, Berlin (2002)
Taillard, E.D.: Benchmarks for Basic Scheduling Problems. European Journal of Operational Research 64, 278–285 (1993)
Teich, J.: Pareto-Front Exploration with Uncertain Objectives. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 314–328. Springer, Heidelberg (2001)
Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary Computation 3(4), 257–271 (1999)
Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.: Performance Assessment of Multiobjective Optimizers: An Analysis and Review. IEEE Transactions on Evolutionary Computation 7(2), 117–132 (2003)
Zitzler, E., Künzli, S.: Indicator-Based Selection in Multiobjective Search. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) Parallel Problem Solving from Nature - PPSN VIII. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Liefooghe, A., Basseur, M., Jourdan, L., Talbi, EG. (2007). Combinatorial Optimization of Stochastic Multi-objective Problems: An Application to the Flow-Shop Scheduling Problem. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds) Evolutionary Multi-Criterion Optimization. EMO 2007. Lecture Notes in Computer Science, vol 4403. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70928-2_36
Download citation
DOI: https://doi.org/10.1007/978-3-540-70928-2_36
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-70927-5
Online ISBN: 978-3-540-70928-2
eBook Packages: Computer ScienceComputer Science (R0)