Abstract
This paper presents a comprehensive comparison between the performance of state-of-the-art genetic algorithms NSGA-II, SPEA2 and IBEA and their differential evolution based variants DEMO\(^\text{NS-II}\), DEMO\(^\text{SP2}\) and DEMO\(^\text{IB}\). Experimental results on 16 numerical multiobjective test problems show that on the majority of problems, the algorithms based on differential evolution perform significantly better than the corresponding genetic algorithms with regard to applied quality indicators. This suggests that in numerical multiobjective optimization, differential evolution explores the decision space more efficiently than genetic algorithms.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Price, K.V., Storn, R.: Differential evolution – A simple evolution strategy for fast optimization. Dr. Dobb’s Journal 22(4), 18–24 (1997)
Price, K., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization. Springer, New York (2005)
Deb, K., Pratap, A., Agrawal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA–II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)
Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evolutionary algorithm. In: Proceedings of Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems – EUROGEN 2001, September 2001, pp. 95–100 (2001)
Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) Parallel Problem Solving from Nature - PPSN VIII. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004)
Abbass, H.A., Sarker, R., Newton, C.: PDE: A Pareto-frontier differential evolution approach for multi-objective optimization problems. In: Proceedings of the 2001 Congress on Evolutionary Computation – CEC 2001, vol. 2, May 2001, pp. 971–978 (2001)
Lampinen, J.: DE’s selection rule for multiobjective optimization. Technical report, Lappeenranta University of Technology (2001)
Madavan, N.K.: Multiobjective optimization using a Pareto differential evolution approach. In: Proceedings of the 2002 Congress on Evolutionary Computation – CEC 2002, vol. 2, May 2002, pp. 1145–1150 (2002)
Xue, F., Sanderson, A.C., Graves, R.J.: Pareto-based multi-objective differential evolution. In: Proceedings of the 2003 Congress on Evolutionary Computation – CEC 2003, vol. 2, December 2003, pp. 862–869 (2003)
Iorio, A.W., Li, X.: Solving rotated multi-objective optimization problems using differential evolution. In: Webb, G.I., Yu, X. (eds.) AI 2004. LNCS (LNAI), vol. 3339, pp. 861–872. Springer, Heidelberg (2004)
Kukkonen, S., Lampinen, J.: An extension of generalized differential evolution for multi-objective optimization with constraints. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) Parallel Problem Solving from Nature - PPSN VIII. LNCS, vol. 3242, pp. 752–761. Springer, Heidelberg (2004)
Robič, T., Filipič, B.: DEMO: Differential evolution for multiobjective optimization. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 520–533. Springer, Heidelberg (2005)
Kukkonen, S., Lampinen, J.: GDE3: The third evolution step of generalized differential evolution. In: Proceedings of the 2005 Congress on Evolutionary Computation – CEC 2005, vol. 1, September 2005, pp. 443–450 (2005)
Iorio, A.W., Li, X.: Incorporating directional information within a differential evolution algorithm for multi-objective optimization. In: Proceedings of the 2006 Genetic and Evolutionary Computation Conference – GECCO 2006, vol. 1, July 2006, pp. 675–682 (2006)
Santana-Quintero, L.V., Coello Coello, C.A.: An algorithm based on differential evolution for multiobjective problems. In: Smart Engineering System Design: Neural Networks, Evolutionary Programming and Artificial Life, November 2005, pp. 211–220 (2005)
Hernández-Díaz, A.G., Santana-Quintero, L.V., Coello Coello, C., Caballero, R., Molina, J.: A new proposal for multi-objective optimization using differential evolution and rough sets theory. In: Proceedings of the 2006 Genetic and Evolutionary Computation Conference – GECCO 2006, vol. 1, July 2006, pp. 675–682 (2006)
Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multi-objective optimization. In: Abraham, A., Jain, R., Goldberg, R. (eds.) Evolutionary Multiobjective Optimization: Theoretical Advances and Applications, pp. 105–145. Springer, Heidelberg (2005)
Huband, S., Barone, L., White, L., Hingston, P.: A scalable multi-objective test problem toolkit. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 280–295. Springer, Heidelberg (2005)
Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA – A platform and programming language independent interface for search algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 494–508. Springer, Heidelberg (2003)
Knowles, J.D., Thiele, L., Zitzler, E.: A tutorial on the performance assessment of stochastic multiobjective optimizers. TIK-Report No. 214, Computer Engineering and Networks Laboratory, ETH Zürich, Switzerland (2006)
Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.D.: Performance assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on Evolutionary Computation 7(2), 117–132 (2003)
Fonseca, C.M., Fleming, P.J.: On the performance assessment and comparison of multiobjective optimizers. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) Parallel Problem Solving from Nature - PPSN IV. LNCS, vol. 1141, pp. 584–593. Springer, Heidelberg (1996)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Tušar, T., Filipič, B. (2007). Differential Evolution versus Genetic Algorithms in Multiobjective Optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds) Evolutionary Multi-Criterion Optimization. EMO 2007. Lecture Notes in Computer Science, vol 4403. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70928-2_22
Download citation
DOI: https://doi.org/10.1007/978-3-540-70928-2_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-70927-5
Online ISBN: 978-3-540-70928-2
eBook Packages: Computer ScienceComputer Science (R0)