Skip to main content

A Note on the Integrity of Middle Graphs

  • Conference paper
Discrete Geometry, Combinatorics and Graph Theory (CJCDGCGT 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4381))

Abstract

The integrity I(G) of a noncomplete connected graph G is a measure of network invulnerability and is defined by I(G) =  min {|S| + m(G − S)}, where S and m(G − S) denote the the subset of V and the order of the largest component of G − S, respectively. In this paper, we determine the integrity and some other parameters of middle graphs of some classes of graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bagga, K., Beineke, L., Goddard, W., Lipman, L., Pippert, R.: A Survey of Integrity. Discrete Applied Math. 37/38, 13–28 (1992)

    Article  MathSciNet  Google Scholar 

  2. Bagga, K., Beineke, L., Lipman, M., Pippert, R.: Edge-Integrity: A Survey. Discrete Math. 124, 3–12 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barefoot, C.A., Entringer, R., Swart, H.: Vulnerability in Graphs—A Comparative Survey. J.Combin. Math. Combin. Comput. 1, 13–21 (1987)

    MathSciNet  MATH  Google Scholar 

  4. Bauer, B., Tindell, R.: The Connectivities of Middle Graph. J. Combin. Inform. Sys. Sci. 7(1), 54–55 (1982)

    MathSciNet  MATH  Google Scholar 

  5. Bondy, J.A., Murty, U.S.R: Graph Theory with Applications. Macmillan, London (1976)

    Google Scholar 

  6. Clark, L.H., Entringer, R.C., Fellows, M.: Computational Complexity of Integrity. J. Combin. Math. Combin. Comput. 2, 179–191 (1987)

    MathSciNet  MATH  Google Scholar 

  7. Goddard, W., Swart, H.: Integrity in Graphs: Bounds and Basics. J. Combin. Math. Combin.Comput. 7, 139–151 (1990)

    MathSciNet  MATH  Google Scholar 

  8. Hamada, T., Yushimura, I.: Tranversability and Connectivity of the Middle Graph of a Graph. Discrete Math. 14, 247–255 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kratsch, D., Kloks, T., Müller, H.: Measuring the Vulnerability for Classes of Intersection Graphs. Discrete Applied Math. 77(3), 259–270 (1997)

    Article  MATH  Google Scholar 

  10. Dündar, P., Aytac, A.: Integrity of Total Graphs via Certain Parameters. Mathematical Notes 76(5), 665–672 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Vince, A.: The Integrity of a Cubic Graph. Discrete Applied Math. 140, 223–239 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jin Akiyama William Y. C. Chen Mikio Kano Xueliang Li Qinglin Yu

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Mamut, A., Vumar, E. (2007). A Note on the Integrity of Middle Graphs. In: Akiyama, J., Chen, W.Y.C., Kano, M., Li, X., Yu, Q. (eds) Discrete Geometry, Combinatorics and Graph Theory. CJCDGCGT 2005. Lecture Notes in Computer Science, vol 4381. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70666-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70666-3_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70665-6

  • Online ISBN: 978-3-540-70666-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics