Abstract
The integrity I(G) of a noncomplete connected graph G is a measure of network invulnerability and is defined by I(G) = min {|S| + m(G − S)}, where S and m(G − S) denote the the subset of V and the order of the largest component of G − S, respectively. In this paper, we determine the integrity and some other parameters of middle graphs of some classes of graphs.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bagga, K., Beineke, L., Goddard, W., Lipman, L., Pippert, R.: A Survey of Integrity. Discrete Applied Math. 37/38, 13–28 (1992)
Bagga, K., Beineke, L., Lipman, M., Pippert, R.: Edge-Integrity: A Survey. Discrete Math. 124, 3–12 (1994)
Barefoot, C.A., Entringer, R., Swart, H.: Vulnerability in Graphs—A Comparative Survey. J.Combin. Math. Combin. Comput. 1, 13–21 (1987)
Bauer, B., Tindell, R.: The Connectivities of Middle Graph. J. Combin. Inform. Sys. Sci. 7(1), 54–55 (1982)
Bondy, J.A., Murty, U.S.R: Graph Theory with Applications. Macmillan, London (1976)
Clark, L.H., Entringer, R.C., Fellows, M.: Computational Complexity of Integrity. J. Combin. Math. Combin. Comput. 2, 179–191 (1987)
Goddard, W., Swart, H.: Integrity in Graphs: Bounds and Basics. J. Combin. Math. Combin.Comput. 7, 139–151 (1990)
Hamada, T., Yushimura, I.: Tranversability and Connectivity of the Middle Graph of a Graph. Discrete Math. 14, 247–255 (1976)
Kratsch, D., Kloks, T., Müller, H.: Measuring the Vulnerability for Classes of Intersection Graphs. Discrete Applied Math. 77(3), 259–270 (1997)
Dündar, P., Aytac, A.: Integrity of Total Graphs via Certain Parameters. Mathematical Notes 76(5), 665–672 (2004)
Vince, A.: The Integrity of a Cubic Graph. Discrete Applied Math. 140, 223–239 (2004)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Mamut, A., Vumar, E. (2007). A Note on the Integrity of Middle Graphs. In: Akiyama, J., Chen, W.Y.C., Kano, M., Li, X., Yu, Q. (eds) Discrete Geometry, Combinatorics and Graph Theory. CJCDGCGT 2005. Lecture Notes in Computer Science, vol 4381. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70666-3_14
Download citation
DOI: https://doi.org/10.1007/978-3-540-70666-3_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-70665-6
Online ISBN: 978-3-540-70666-3
eBook Packages: Computer ScienceComputer Science (R0)