Abstract
Awareness about interconnectivities and interactions among parameters is vital for the identification of the optimal manufacturing routes and economic factors within a manufacturing system. Within this context, multidimensional data projection methods, Principal Component Mapping (PCM) and Sammon’s Mapping, have been scrutinized for visualizing multivariate interaction patterns. As a new approach, these techniques were employed in such a way that interactive multi-layer maps could be created. Each layer within the generated map matches to a specific attribute and characteristic of the dataset. Individual layers within the map can be interactively selected and superimposed to show multiple and partial interactions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ralston, P., DePuy, G., Graham, J.H.: Computer-based Monitoring and Fault Diagnosis: Chemical Process Case Study. ISA Transactions 40, 85–98 (2001)
Jackson, J.E.: A User Guide to Principal Components. John Wiley & Sons, Inc Chichester (1991)
Aggarwal, C.C.: On the Effects of Dimensionality Reduction on High Dimensional Similarity Search, IBM T.J. Watson Research Centre, Yorktown Heights NY 10598
Bai, Z., Demmel, J., et al.: Templates for the solution of algebraic Eigenvalue Problems: a practical guide. Siam (2000)
Vesanto, J.: SOM-Based Data Visualization Methods. Intell. Data Anal. 3(2) (1999)
Jolliffe, I.T.: Principal Component Analysis, pp. 41–46. Springer, Heidelberg (1986)
Sammon, J.W.: A non-linear mapping for data structure analysis. IEEE Transactions on Computers 18, 401–409 (1969)
Rider, D.D., Duin, R.P.: Pattern Recognition Letters 18, 1307–1316 (1997)
Biswas, G., Jain, A.K., Dubes, R.C.: Evaluation of Projection algorithms. IEEE Trans. Pattern AnalMach. Intell. 3(6), 701–708 (1981)
Bezedek, J.C., Pal, N.R.: An index of topological preservation for feature extraction. Pattern Recognition 28, 381–391 (1995)
Kohonen, T.: Self-Organizing Maps, 2nd edn. Springer, Heidelberg (1997)
Dzemyda, G.: Visualisation of a set of parameters characterized by their correlation matrix. Computational Statistics & Data Analysis (Elsevier) 36, 15–30 (2001)
Mao, J., Jain, A.: Artificial Neural Networks for feature extraction and multivariate data projection. IEEE Transactions on Neural Networks 6, 296–317 (1995)
Lerner, B., et al.: Pattern Analysis & Applications, vol. 3, pp. 61–68. Springer, Heidelberg (2000)
Lerner, B., et al.: On Pattern Classification with Sammon’s Nonlinear Mapping – An Experiemental Study. Pattern Recognition (Pergamon) 31(4), 371–381 (1998)
Lee, R.C.T., Slagle, J.R., et al.: A triangulation method for sequential mapping of points from n-space to two-space. IEEE Transactions on Computers 27, 288–299 (1977)
Pal, N.R., et al.: Fuzzy Logic Approaches to Structure Preserving Dimensionality Reduction. IEEE Transactions on Fuzzy Systems 10(3) (June 2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rezvani, S., Prasad, G., Muir, J., McCraken, K. (2003). An Extended Multivariate Data Visualization Approach for Interactive Feature Extraction from Manufacturing Data. In: Liu, J., Cheung, Ym., Yin, H. (eds) Intelligent Data Engineering and Automated Learning. IDEAL 2003. Lecture Notes in Computer Science, vol 2690. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45080-1_115
Download citation
DOI: https://doi.org/10.1007/978-3-540-45080-1_115
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40550-4
Online ISBN: 978-3-540-45080-1
eBook Packages: Springer Book Archive