Abstract
A spatial time series dataset is a collection of time series, each referencing a location in a common spatial framework. Correlation analysis is often used to identify pairs of potentially interacting elements from the cross product of two spatial time series datasets (the two datasets may be the same). However, the computational cost of correlation analysis is very high when the dimension of the time series and the number of locations in the spatial frameworks are large. In this paper, we use a spatial autocorrelation-based search tree structure to propose new processing strategies for correlation-based similarity range queries and similarity joins. We provide a preliminary evaluation of the proposed strategies using algebraic cost models and experimental studies with Earth science datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
NOAA El Nino Page, http://www.elnino.noaa.gov/
Agrawal, R., Faloutsos, C., Swami, A.: Efficient Similarity Search In Sequence Databases. In: Proc. of the 4th Int’l Conference of Foundations of Data Organization and Algorithms (1993)
Arge, L., Procopiuc, O., Ramaswamy, S., Suel, T., Vitter, J.: Scalable Sweeping- Based Spatial Join. In: Proc. of the 24th Int’l. Conf. on VLDB (1998)
Box, G., Jenkins, G., Reinsel, G.: Time Series Analysis: Forecasting and Control. Prentice Hall, Englewood Cliffs (1994)
Lindgren, B.W.: Statistical Theory, 4th edn. Chapman-Hall, Boca Raton (1998)
Chan, K., Fu, A.W.: Efficient Time Series Matching by Wavelets. In: Proc. of the 15th ICDE (1999)
Cressie, N.: Statistics for Spatial Data. John Wiley and Sons, Chichester (1991)
Elmasri, R., Navathe, S.: Fundamentals of Database Systems. Addsion Wesley Higher Education, London (2002)
Faloutsos, C.: Searching Multimedia Databases By Content. Kluwer Academic Publishers, Dordrecht (1996)
Food and Agriculture Organization. Farmers brace for extreme weather conditions as El Nino effect hits Latin America and Australia, http://www.fao.org/NEWS/1997/970904-e.htm
Grossman, R., Kamath, C., Kegelmeyer, P., Kumar, V., Namburu, R. (eds.): Data Mining for Scientific and Engineering Applications. Kluwer Academic Publishers, Dordrecht (2001) ISBN: 1-4020-0033-2
Gunopulos, D., Das, G.: Time Series Similarity Measures and Time Series Indexing. SIGMOD Record 30(2) (2001)
DeWitt, D.J., Patel, J.M.: Partition BasedS patial-Merge Join. In: Proc. of the ACM SIGMOD Conference (1996)
Leutenegger, S.T., Lopez, M.A.: The Effect of Buffering on the Performance of R-Trees. In: Proc. of the ICDE Conf., pp. 164–171 (1998)
Potter, C., Klooster, S., Brooks, V.: Inter-annual Variability in Terrestrial Net Primary Production: Exploration of Trends and Controls on Regional to Global Scales. Ecosystems 2(1), 36–48 (1999)
Rigaux, P., Scholl, M., Voisard, A.: Spatial Databases: With Application to GIS. Morgan Kaufmann Publishers, San Francisco (2001)
Roddick, J., Hornsby, K., Spiliopoulou, M.: An Updated Bibliography of Temporal, Spatial, and Spatio-Temporal Data Mining Research. In: Roddick, J., Hornsby, K.S. (eds.) TSDM 2000. LNCS (LNAI), vol. 2007, p. 147. Springer, Heidelberg (2001)
Samet, H.: The Design and Analysis of Spatial Data Structures. Addison-Wesley Publishing Company, Reading (1990)
Shekhar, S., Chawla, S.: Spatial Databases: A Tour. Prentice Hall, Englewood Cliffs (2003) ISBN:0130174807
Shekhar, S., Chawla, S., Ravada, S., Fetterer, A., Liu, X., Lu, C.T.: Spatial Databases: Accomplishments and Research Needs. IEEE TKDEÂ 11(1) (1999)
Tobler, W.R.: Cellular Geography, Philosophy in Geography. In: Gale, S., Olsson, C. (eds.) Cellular Geography, Philosophy in Geography, Reidel, Dordrecht (1979)
Worboys, M.F.: GIS - A Computing Perspective. Taylor and Francis, Abington (1995)
Zhang, P., Huang, Y., Shekhar, S., Kumar, V.: Correlation Analysis of Spatial Time Series Datasets: A Filter-and-Refine Approach. In: Proc. of the 7th Pacific-Asia Conf. on Knowledge Discovery and Data Mining (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhang, P., Huang, Y., Shekhar, S., Kumar, V. (2003). Exploiting Spatial Autocorrelation to Efficiently Process Correlation-Based Similarity Queries. In: Hadzilacos, T., Manolopoulos, Y., Roddick, J., Theodoridis, Y. (eds) Advances in Spatial and Temporal Databases. SSTD 2003. Lecture Notes in Computer Science, vol 2750. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45072-6_26
Download citation
DOI: https://doi.org/10.1007/978-3-540-45072-6_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40535-1
Online ISBN: 978-3-540-45072-6
eBook Packages: Springer Book Archive