Skip to main content

Non-planar Orthogonal Drawings with Fixed Topology

Extended Abstract

  • Conference paper
SOFSEM 2005: Theory and Practice of Computer Science (SOFSEM 2005)

Abstract

This paper discusses the calculation of bend minimal shapes for non-planar graphs with given topology. Based on the Simple-Kandinsky drawing standard – a simplification of the more complex Kandinsky standard – we show the disadvantage of using standard models for this task: We show that the minimal bend count is suboptimal, when these models are applied to non-planar graphs; it is therefore beneficial to extend these standards.

We define such an extension for Simple-Kandinsky called Skanpag (Simple-Kandinsky for Non-Planar Graphs). It treats edge crossings in a special way by letting them share identical grid points where appropriate. Hence it allows crossings of whole bundles of edges instead of single edges only. Besides having a reduced number of bends, drawings following this standard are easier to read and consume less area than those produced by the traditional approaches.

In this paper, we show a sharp upper bound of the bend count, if the standard Simple-Kandinsky model is used to calculate shapes for non-planar graphs. Furthermore, we present an algorithm that computes provably bend-minimal drawings in the Skanpag standard.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Batini, C., Nardelli, E., Tamassia, R.: A layout algorithm for data flow diagrams. IEEE Trans. Softw. Eng. 12, 538–546 (1986)

    Google Scholar 

  2. Battista, G.D., Eades, P., Tamassia, R., Tollis, I.: Graph Drawing. Prentice Hall, Englewood Cliffs (1998)

    Google Scholar 

  3. Tamassia, R., Battista, G.D., Batini, C.: Automatic graph drawing and readability of diagrams. IEEE Trans. Syst. Man. Cybern. SMC-18(1) (1988)

    Google Scholar 

  4. Bertolazzi, P., Di Battista, G., Didimo, W.: Computing orthogonal drawings with the minimum number of bends. IEEE Transactions on Computers 49, 826–840 (2000)

    Article  Google Scholar 

  5. Fößmeier, U., Kaufmann, M.: Drawing high degree graphs with low bend numbers. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 254–266. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  6. Chimani, M.: Bend-minimal orthogonal drawing of non-planar graphs. Master’s thesis, Vienna University of Technology, Department of Computer Science, Austria (2004)

    Google Scholar 

  7. Chimani, M., Klau, G., Weiskircher, R.: Non-planar orthogonal drawings with fixed topology. Technical Report TR 186 1 04 03, Institute of Computer Graphics and Algorithms, Vienna University of Technology (2004)

    Google Scholar 

  8. Fößmeier, U., Kaufmann, M.: Algorithms and area bounds for nonplanar orthogonal drawings. In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 134–145. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  9. Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput. 16, 421–444 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  10. Eiglsperger, M., Fößmeier, U., Kaufmann, M.: Orthogonal graph drawing with constraints. In: 10th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 1999), pp. 3–11 (1999)

    Google Scholar 

  11. Jünger, M., Klau, G.W., Mutzel, P., Weiskircher, R.: AGD: A Library of Algorithms for Graph Drawing. Mathematics and Visualization. In: Graph Drawing Software, pp. 149–172. Springer, Heidelberg (2003)

    Google Scholar 

  12. Di Battista, G., Garg, A., Liotta, G.: An experimental comparison of three graph drawing algorithms (extended abstract). In: Proceedings of the eleventh annual symposium on Computational geometry, pp. 306–315. ACM Press, New York (1995)

    Chapter  Google Scholar 

  13. Battista, G.D., Didimo, W., Marcandalli, A.: Planarization of clustered graphs. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 60–74. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Lütke-Hüttmann, D.: Knickminimales Zeichnen 4–planarer Clustergraphen. Master’s thesis, Saarland University, Department of Computer Science, Saarbrücken, Germany (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chimani, M., Klau, G.W., Weiskircher, R. (2005). Non-planar Orthogonal Drawings with Fixed Topology. In: Vojtáš, P., Bieliková, M., Charron-Bost, B., Sýkora, O. (eds) SOFSEM 2005: Theory and Practice of Computer Science. SOFSEM 2005. Lecture Notes in Computer Science, vol 3381. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30577-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30577-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24302-1

  • Online ISBN: 978-3-540-30577-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics