Abstract
This paper discusses the calculation of bend minimal shapes for non-planar graphs with given topology. Based on the Simple-Kandinsky drawing standard – a simplification of the more complex Kandinsky standard – we show the disadvantage of using standard models for this task: We show that the minimal bend count is suboptimal, when these models are applied to non-planar graphs; it is therefore beneficial to extend these standards.
We define such an extension for Simple-Kandinsky called Skanpag (Simple-Kandinsky for Non-Planar Graphs). It treats edge crossings in a special way by letting them share identical grid points where appropriate. Hence it allows crossings of whole bundles of edges instead of single edges only. Besides having a reduced number of bends, drawings following this standard are easier to read and consume less area than those produced by the traditional approaches.
In this paper, we show a sharp upper bound of the bend count, if the standard Simple-Kandinsky model is used to calculate shapes for non-planar graphs. Furthermore, we present an algorithm that computes provably bend-minimal drawings in the Skanpag standard.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Batini, C., Nardelli, E., Tamassia, R.: A layout algorithm for data flow diagrams. IEEE Trans. Softw. Eng. 12, 538–546 (1986)
Battista, G.D., Eades, P., Tamassia, R., Tollis, I.: Graph Drawing. Prentice Hall, Englewood Cliffs (1998)
Tamassia, R., Battista, G.D., Batini, C.: Automatic graph drawing and readability of diagrams. IEEE Trans. Syst. Man. Cybern. SMC-18(1) (1988)
Bertolazzi, P., Di Battista, G., Didimo, W.: Computing orthogonal drawings with the minimum number of bends. IEEE Transactions on Computers 49, 826–840 (2000)
Fößmeier, U., Kaufmann, M.: Drawing high degree graphs with low bend numbers. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 254–266. Springer, Heidelberg (1996)
Chimani, M.: Bend-minimal orthogonal drawing of non-planar graphs. Master’s thesis, Vienna University of Technology, Department of Computer Science, Austria (2004)
Chimani, M., Klau, G., Weiskircher, R.: Non-planar orthogonal drawings with fixed topology. Technical Report TR 186 1 04 03, Institute of Computer Graphics and Algorithms, Vienna University of Technology (2004)
Fößmeier, U., Kaufmann, M.: Algorithms and area bounds for nonplanar orthogonal drawings. In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 134–145. Springer, Heidelberg (1997)
Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput. 16, 421–444 (1987)
Eiglsperger, M., Fößmeier, U., Kaufmann, M.: Orthogonal graph drawing with constraints. In: 10th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 1999), pp. 3–11 (1999)
Jünger, M., Klau, G.W., Mutzel, P., Weiskircher, R.: AGD: A Library of Algorithms for Graph Drawing. Mathematics and Visualization. In: Graph Drawing Software, pp. 149–172. Springer, Heidelberg (2003)
Di Battista, G., Garg, A., Liotta, G.: An experimental comparison of three graph drawing algorithms (extended abstract). In: Proceedings of the eleventh annual symposium on Computational geometry, pp. 306–315. ACM Press, New York (1995)
Battista, G.D., Didimo, W., Marcandalli, A.: Planarization of clustered graphs. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 60–74. Springer, Heidelberg (2002)
Lütke-Hüttmann, D.: Knickminimales Zeichnen 4–planarer Clustergraphen. Master’s thesis, Saarland University, Department of Computer Science, Saarbrücken, Germany (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chimani, M., Klau, G.W., Weiskircher, R. (2005). Non-planar Orthogonal Drawings with Fixed Topology. In: Vojtáš, P., Bieliková, M., Charron-Bost, B., Sýkora, O. (eds) SOFSEM 2005: Theory and Practice of Computer Science. SOFSEM 2005. Lecture Notes in Computer Science, vol 3381. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30577-4_13
Download citation
DOI: https://doi.org/10.1007/978-3-540-30577-4_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-24302-1
Online ISBN: 978-3-540-30577-4
eBook Packages: Computer ScienceComputer Science (R0)