Abstract
In this paper we present a novel approach to match two images in presenting large scale and rotation changes. The proposed approach is based on scale invariant region description. Scale invariant region is detected by a two-step process and represented by a new descriptor. The descriptor is a two-dimensional gray-level histogram. Different descriptors can be directly compared. In addition, our descriptor is invariant to image rotation and large scale changes as well as robust to small viewpoint changes. The experiments demonstrate that our method is effective enough for image matching and retrieval.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Schmid, C., Mohr, R.: Local Grayvalue Invariants for Image Retrieval. IEEE PAMI 19, 530–534 (1997)
Lowe, D.G.: Object Recognition from Local Scale-Invariant Features. In: ICCV, pp. 1150–1157 (1999)
Nagao, K.: Recognizing 3D Objects Using Photometric Invariant. In: ICCV, pp. 480–487 (1995)
Mikolajczyk, K.: Detection of Local Features Invariant to Affine Transformations. PhD thesis, INRIA (2002)
Mikolajczyk, K., Schmid, C.: An Affine Invariant Interest Point Detector. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 128–142. Springer, Heidelberg (2002)
Schaffalitzky, F., Zisserman, A.: Multi-view Matching for Unordered Image Sets, or “How Do I Organize My Holiday Snaps? In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 414–431. Springer, Heidelberg (2002)
Tuytelaars, T., Van Gool, L.: Wide Baseline Stereo Matching Based on Local Affinely Invariant Regions. In: BMVC, pp. 412–425 (2000)
Mikolajczyk, K., Schmid, C.: Indexing Based on Scale Invariant Interest Points. In: ICCV, pp. 525–531 (2001)
Baumberg, A.: Reliable Feature Matching across Widely Separated Views. In: CVPR, pp. 774–781 (2000)
Harris, C., Stephens, M.: A Combined Corner and Edge Detector. In: Proc. Alvey Vision Conf., Manchester, pp. 189–192 (1988)
Xiao, J., Shah, M.: Two-Frame Wide Baseline Matching. In: ICCV, pp. 603–609 (2003)
Slater, D., Healey, G.: The Illumination-Invariant Recognition of 3D Objects Using Color Invariants. IEEE PAMI 18, 206–210 (1996)
Dufournaud, Y., Schmid, C., Horaud, R.: Matching Images with Different Resolutions. In: CVPR, pp. 621–618 (2000)
Lindeberg, T.: Feature detection with automatic scale selection. IJCV 30, 79–116 (1998)
Schmid, C., Mohr, R., Bauckhage, C.: Evaluation of Interesting Point Detectors. IJCV 37, 151–172 (2000)
Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints (May 2004), Preprint of article obtained from, http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
Belongie, S., Malik, J., Puzicha, J.: Shape Matching and Object Recognition Using Shape Contexts. IEEE PAMI 24, 509–522 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Qin, L., Zeng, W., Wang, W. (2004). Image Matching Based on Scale Invariant Regions. In: Aizawa, K., Nakamura, Y., Satoh, S. (eds) Advances in Multimedia Information Processing - PCM 2004. PCM 2004. Lecture Notes in Computer Science, vol 3333. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30543-9_17
Download citation
DOI: https://doi.org/10.1007/978-3-540-30543-9_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23985-7
Online ISBN: 978-3-540-30543-9
eBook Packages: Computer ScienceComputer Science (R0)