Skip to main content

Coupling of Evolution and Learning to Optimize a Hierarchical Object Recognition Model

  • Conference paper
Parallel Problem Solving from Nature - PPSN VIII (PPSN 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3242))

Included in the following conference series:

Abstract

A key problem in designing artificial neural networks for visual object recognition tasks is the proper choice of the network architecture. Evolutionary optimization methods can help to solve this problem. In this work we compare different evolutionary optimization approaches for a biologically inspired neural vision system: Direct coding versus a biologically more plausible indirect coding using unsupervised local learning. A comparison to state-of-the-art recognition approaches shows the competitiveness of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Yao, X.: Evolving artificial neural networks. Proc. IEEE 87(9), 1423–1447 (1999)

    Article  Google Scholar 

  2. Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nature Neuroscience 2(11), 1019–1025 (1999)

    Article  Google Scholar 

  3. Barlow, H.B.: The twelfth Bartlett memorial lecture: The role of single neurons in the psychology of perception. Quart. J. Exp. Psychol. 37, 121–145 (1985)

    Google Scholar 

  4. Olshausen, B.A., Field, D.J.: Sparse coding with an overcomplete basis set: A strategy employed by V1? Vision Research 37, 3311–3325 (1997)

    Article  Google Scholar 

  5. Kitano, H.: Designing neural networks using genetic algorithms with graph generation system. Complex Systems 4, 461–476 (1990)

    MATH  Google Scholar 

  6. Rolls, E.T., Stringer, S.M.: On the design of neural networks in the brain by genetic evolution. Progress in Neurobiology 6(61), 557–579 (2000)

    Article  Google Scholar 

  7. Sendhoff, B., Kreutz, M.: A model for the dynamic interaction between evolution and learning. Neural Processing Letters 10(3), 181–193 (1999)

    Article  Google Scholar 

  8. Quartz, S., Sejnowski, T.: The neural basis of cognitive development: A constructivist manifesto. Behavioral and Brain Sciences 9, 537–596 (1997)

    Google Scholar 

  9. Rust, A.G., Adams, R., George, S., Bolouri, H.: Towards computational neural systems through developmental evolution. In: Wermter, S., Austin, J., Willshaw, D.J. (eds.) Emergent Neural Computational Architectures Based on Neuroscience. LNCS (LNAI), vol. 2036, pp. 188–202. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Wersing, H., Körner, E.: Learning optimized features for hierarchical models of invariant recognition. Neural Computation 15(7), 1559–1588 (2003)

    Article  MATH  Google Scholar 

  11. Fukushima, K.: Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cyb. 39, 139–202 (1980)

    Google Scholar 

  12. Schwefel, H.-P., Rudolph, G.: Contemporary evolution strategies. In: Morán, F., Merelo, J.J., Moreno, A., Chacon, P. (eds.) ECAL 1995. LNCS, vol. 929, pp. 893–907. Springer, Heidelberg (1995)

    Google Scholar 

  13. Hyvärinen, A., Oja, E.: A fast fixed-point algorithm for independent component analysis. Neural Computation 9(7), 1483–1492 (1997)

    Article  Google Scholar 

  14. Wersing, H., Körner, E.: Unsupervised learning of combination features for hierarchical recognition models. In: Icann, J.R.D., et al. (eds.) Int. Conf. Artif. Neur. Netw., pp. 1225–1230. Springer, Heidelberg (2002)

    Google Scholar 

  15. Nayar, S.K., Nene, S.A., Murase, H.: Real-time 100 object recognition system. In: Proc. of ARPA Image Understanding Workshop, Palm Springs (1996)

    Google Scholar 

  16. Roobaert, D., Hulle, M.V.: View-based 3d object recognition with support vector machines. In: Proc. IEEE Int. Workshop on Neural Networks for Signal Processing, Madison, pp. 77–84. IEEE, New York (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schneider, G., Wersing, H., Sendhoff, B., Körner, E. (2004). Coupling of Evolution and Learning to Optimize a Hierarchical Object Recognition Model. In: Yao, X., et al. Parallel Problem Solving from Nature - PPSN VIII. PPSN 2004. Lecture Notes in Computer Science, vol 3242. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30217-9_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30217-9_67

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23092-2

  • Online ISBN: 978-3-540-30217-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics