Skip to main content

A Two-Step EM Algorithm for MAP Fitting

  • Conference paper
Computer and Information Sciences - ISCIS 2004 (ISCIS 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3280))

Included in the following conference series:

  • 916 Accesses

Abstract

In this paper we propose a two-step expectation-maximization (EM) algorithm to fit parameters of a Markovian arrival process (MAP) according to measured data traces. The first step of the EM algorithm performs fitting of the empirical distribution function to a phase type (PH) distribution, and the second step transforms the PH distribution into a MAP and modifies the MAP matrices to capture the autocovariance of the trace. In the first step of the algorithm a compact presentation of the distribution function is used and in the second step statistical properties of measured data traces are exploited to improve the efficiency of the algorithm. Numerical examples show that even compact MAP models yield relatively good approximations for the distribution function and the autocovariance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. The internet traffic archive, http://ita.ee.lbl.gov/html/traces.html

  2. Andersen, A.T.: Modelling of Packet Traffic With Matrix Analytic Methods. PhD thesis, Technical University of Denmark (1995)

    Google Scholar 

  3. Andersson, S.: Hidden Markov Models - traffic modeling and subspace methods. PhD thesis, Lund University, Centre for Mathematical Sciences (2002)

    Google Scholar 

  4. Asmussen, S., Nerman, O., Olsson, M.: Fitting phase type distributions via the EM algorithm. Scandinavian Journal of Statistics 23, 419–441 (1996)

    MATH  Google Scholar 

  5. Buchholz, P.: An EM-algorithm for MAP fitting from real traffic data. In: Kemper, P., Sanders, W.H. (eds.) TOOLS 2003. LNCS, vol. 2794, pp. 218–236. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Fox, B.L., Glynn, P.W.: Computing Poisson probabilities. Communications of the ACM 31(4), 440–445 (1988)

    Article  MathSciNet  Google Scholar 

  7. Klemm, A., Lindemann, C., Lohmann, M.: Modeling IP Traffic Using the Batch Markovian Arrival Process (extended version). Perf. Eval. 54, 149–173 (2003)

    Article  Google Scholar 

  8. Mitchell, K., van de Liefvoort, A.: Approximation models of feed-forward G/G/1/N queueing networks with correlated arrivals. Performance Evaluation 51(1) (2003)

    Google Scholar 

  9. Neuts, M.F.: Structured Stochastic Matrices of M/G/1 Type and Their Applications. Marcel Dekker, Inc., New York (1989)

    MATH  Google Scholar 

  10. Nogueira, A., Salvador, P., Valadas, R., Pacheco, A.: A hierarchical approach based on MMPP’s for modelling self-similar traffic over multiple time scales. In: HET-NETs 2003 Technical Proceedings (2003)

    Google Scholar 

  11. Resnick, S.: Modeling data networks. Tr-1345, School of Operations Research and Industrial Engineering, Cornell University (August 2002)

    Google Scholar 

  12. Riska, A., Diev, V., Smirni, E.: An EM-based technique for approximating long-tailed data sets with ph distributions. Performance Evaluation 55, 147–164 (2004)

    Article  Google Scholar 

  13. Ryden, T.: An EM algorithm for estimation in Markov-modulated Poisson processes. Computational Statistics and Data Analysis 21, 431–447 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Yoshihara, T., Kasahara, S., Takahashi, Y.: Practical Time-scale Fitting of Self-similar Traffic with MMPP. Telecommunication Systems 17, 185–211 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Buchholz, P., Panchenko, A. (2004). A Two-Step EM Algorithm for MAP Fitting. In: Aykanat, C., Dayar, T., Körpeoğlu, İ. (eds) Computer and Information Sciences - ISCIS 2004. ISCIS 2004. Lecture Notes in Computer Science, vol 3280. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30182-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30182-0_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23526-2

  • Online ISBN: 978-3-540-30182-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics