Abstract
In this paper, we present a method for correction of brain shift based on segmentation and registration of blood vessels from pre-operative MR images and intraoperative Doppler ultrasound data. We segment the vascular tree from both MR and US images and use chamfer distance maps and a non-linear registration algorithm to estimate the deformation between the two datasets. The method has been tested in a series of simulation experiments, and in a phantom study. Preliminary results show that we are able to account for large portions of the non-linear deformations and that the technique is capable of estimating shifts when only a very limited region of the brain is covered by the ultrasound volume.
Chapter PDF
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Nabavi, A., et al.: Serial intraoperative magnetic resonance imaging of brain shift. Neurosurgery 48(4), 787–798 (2001)
Grønningsaeter, Å., et al.: Sonowand, an ultrasound-based neuronavigation system. Neurosurgery 47(6), 1373–1380 (2000)
Arbel, T., Morandi, X., Comeau, R.M., Collins, D.L.: Automatic non-linear MRI-ultrasound registration for the correction of intra-operative brain deformations. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 913–922. Springer, Heidelberg (2001)
Borgefors, G.: Hierchical chamfer matching: A parametric edge matching algorithm. IEEE Trans. on PAMI 10(6), 849–865 (1988)
Collins, D.L., Evans, A.C.: ANIMAL: Validation and application of non-linear registration-based segmentation. IJPRAI 11(8), 1271–1294 (1997)
Roberts, D.W., et al.: Intraoperative brain shift and deformation: A quantitative analysis of cortical displacement in 28 cases. Neurosurgery 43(5), 749–760 (1998)
Roberts, D.W., et al.: Intraoperatively updated neuroimaging using brain modeling and sparse data. Neurosurgery 45(5), 1199–1207 (1999)
Descoteaux, M., Collins, D.L., Siddiqi, K.: A multi-scale geometric flow for segmenting vasculature in MRI. In: Proc. ECCV (2004)
A.R., et al.: Rigid registration of 3D ultrasound with MR images: A new approach combining intensity and gradient information. IEEE TMI 20(10), 1038–1049 (2001)
Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Muliscale vessel enhancement filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998)
Hill, D.L., Maurer, C.R., Maciunas, R.J., Barwise, J.A., Fitzpatrick, J.M., Wang, M.Y.: Measurement of intraoperative brain surface deformation under a craniotomy. Neurosurgery 43(3), 514–528 (1998)
Miga, M.I., et al.: In vivo quantification of a homogeneous brain deformation model for updating preoperative images during surgery. IEEE BME 47(2), 266–273 (2000)
Haberland, N., et al.: Neuronavigation in surgery of intracranial and spinal tumors. Journ. Canc. Res. Clin. Onc. 126, 529–541 (2000)
Nimsky, C., Ganslandt, O., Hastreiter, P., Fahlbusch, R.: Intraoperative compensation for brain shift. Surgical Neurology 10, 357–365 (2001)
Vasilevskiy, A., Siddiqi, K.: Flux maximizing geometric flows. IEEE PAMI 24(12), 1565–1578 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Reinertsen, I., Descoteaux, M., Drouin, S., Siddiqi, K., Collins, D.L. (2004). Vessel Driven Correction of Brain Shift. In: Barillot, C., Haynor, D.R., Hellier, P. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2004. MICCAI 2004. Lecture Notes in Computer Science, vol 3217. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30136-3_27
Download citation
DOI: https://doi.org/10.1007/978-3-540-30136-3_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22977-3
Online ISBN: 978-3-540-30136-3
eBook Packages: Springer Book Archive