Skip to main content

Systolic Architectures for Soft Computing Algorithms

  • Conference paper
Parallel Processing and Applied Mathematics (PPAM 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3019))

  • 522 Accesses

Abstract

In the last decade various soft computing techniques have been developed. They include neural networks, fuzzy systems, evolutionary algorithms, rough sets and others. In many applications it is desirable that soft computing techniques are implemented in parallel VLSI structures based on systolic arrays. In this paper we present the systolic implementations of the UD RLS learning algorithms for feed-forward neural networks and for probabilistic neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rutkowski, L.: Sequential estimates of probability densities by orthogonal series and their application in pattern classification. IEEE Transactions on Systems, Man, and Cybernetics SMC-10(12), 918–920 (1980)

    MathSciNet  Google Scholar 

  2. Rutkowski, L.: Sequential estimates of a regression function by orthogonal series with applications in discrimination. Lectures Notes in Statistics 8, 236–244 (1981)

    MathSciNet  Google Scholar 

  3. Greblicki, W., Rutkowski, L.: Density-free Bayes risk consistency of nonparametric pattern recognition procedures. Proceedings of the IEEE 69(4), 482–483 (1981)

    Article  Google Scholar 

  4. Rutkowski, L.: On Bayes risk consistent pattern recognition procedures in a quasi-stationary environment. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-4(1), 84–87 (1982)

    Article  MathSciNet  Google Scholar 

  5. Rutkowski, L.: On system identification by nonparametric function fitting. IEEE Transactions on Automatic Control AC-27, 225–227 (1982)

    Article  Google Scholar 

  6. Rutkowski, L.: On-line identification of time-varying systems by nonparametric techniques. IEEE Transactions on Automatic Control AC-27, 228–230 (1982)

    Article  Google Scholar 

  7. Rutkowski, L.: On nonparametric identification with prediction of timevarying systems. IEEE Transactions on Automatic Control AC-29, 58–60 (1984)

    Article  Google Scholar 

  8. Rutkowski, L.: The real-time identification of time-varying systems by nonparametric algorithms based on the Parzen kernels. International Journal of Systems Science 16, 1123–1130 (1985)

    Article  MATH  Google Scholar 

  9. Rutkowski, L.: Nonparametric identification of quasi-stationary systems. Systems and Control Letters 6, 33–35 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  10. Rutkowski, L.: Sequential pattern recognition procedures derived from multiple Fourier series. Pattern Recognition Letters 8, 213–216 (1988)

    Article  MATH  Google Scholar 

  11. Rutkowski, L.: Nonparametric procedures for identification and control of linear dynamic systems. In: Proceedings of 1988 American Control Conference, June 15-17, pp. 1325–1326 (1988)

    Google Scholar 

  12. Kung, S.Y.: VLSI Array Processors. Prentice-Hall, Englewood Cliffs (1988)

    Google Scholar 

  13. Rutkowski, L., Rafajłowicz, E.: On global rate of convergence of some nonparametric identification procedures. IEEE Transaction on Automatic Control AC-34(10), 1089–1091 (1989)

    Article  Google Scholar 

  14. Rutkowski, L.: Nonparametric learning algorithms in the time-varying environments. Signal Processing 18, 129–137 (1989)

    Article  MathSciNet  Google Scholar 

  15. Rutkowski, L.: An application of multiple Fourier series to identification of multivariable nonstationary systems. International Journal of Systems Science 20(10), 1993–2002 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hwang, J.N., Kung, S.Y.: Parallel Algorithms/Architectures for Neural Networks. Journal of VLSI Signal Processing 1, 221–251 (1989)

    Article  MATH  Google Scholar 

  17. Rutkowski, L.: Identification of MISO nonlinear regressions in the presence of a wide class of disturbances. IEEE Transactions on Information Theory IT-37, 214–216 (1991)

    Article  MathSciNet  Google Scholar 

  18. Żurada, J.: Introduction to Artificial Neural Systems. West Publishing Company, St. Paul (1992)

    Google Scholar 

  19. Rutkowski, L.: Multiple Fourier series procedures for extraction of nonlinear regressions from noisy data. IEEE Transactions on Signal Processing 41(10), 3062–3065 (1993)

    Article  MATH  Google Scholar 

  20. Tadeusiewicz, R.: Neural Networks, Akademicka Oficyna Wydawnicza, Warszawa (1993) (in Polish)

    Google Scholar 

  21. Rutkowski, L.: Adaptive Signal Processing: Theory and Applications, WNT (1994) (in Polish)

    Google Scholar 

  22. Smolag, J., Rutkowski, L.: A systolic architecture for fast training of feedforward neural networks. In: Proceedings of the Second Conference on Neural Networks and Their Applications, Szczyrk, pp. 426–432 (1996)

    Google Scholar 

  23. Smolag, J., Rutkowski, L., Bilski, J.: Systolic Architectures for Neural Networks, Part I. In: Proceedings of the Third Conference on Neural Networks and Their Applications, Kule, pp. 614–621 (1997)

    Google Scholar 

  24. Smolag, J., Rutkowski, L., Bilski, J.: Systolic Architectures for Neural Networks, Part II. In: Proceedings of the Third Conference on Neural Networks and Their Applications, Kule, pp. 622–625 (1997)

    Google Scholar 

  25. Bilski, J., Rutkowski, L.: A fast training algorithm for neural networks. IEEE Transactions on Circuits and Systems, Part II 45(6), 749–753 (1998)

    Article  Google Scholar 

  26. Rutkowski, L.: New Soft Computing Techniques for System Modelling. Pattern Classification and Image Processing, Springer-Verlag (2004)

    Google Scholar 

  27. Rutkowski, L., Cpałka, K.: Flexible neuro-fuzzy systems. IEEE Transactions on Neural Networks 14, 554–574 (2003)

    Article  Google Scholar 

  28. Rutkowski, L.: Adaptive probabilistic neural-networks for pattern classification in time-varying environment. IEEE Transactions on Neural Networks 15 (March 2004)

    Google Scholar 

  29. Rutkowski, L.: Flexible Neuro-Fuzzy Systems: Structures, Learning and Performance Evaluation. Kluwer, Dordrecht (2004)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bilski, J., Smoląg, J., Żurada, J. (2004). Systolic Architectures for Soft Computing Algorithms. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2003. Lecture Notes in Computer Science, vol 3019. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24669-5_79

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24669-5_79

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21946-0

  • Online ISBN: 978-3-540-24669-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics