Skip to main content

On the Complexity of Dependent And-Parallelism in Logic Programming

  • Conference paper
Logic Programming (ICLP 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2916))

Included in the following conference series:

Abstract

We present results concerning the computational complexity of the key execution mechanisms required to handle Dependent And-Parallel executions in logic programming. We develop formal abstractions of the problems in terms of dynamic trees, design efficient data structures, and present some lower bound results. This work is part of a larger effort to understand, formalize, and study the complexity-theoretic and algorithmic issues in parallel implementations of logic programming.

Research partially supported by NSF grants EIA-0220590, EIA-0130887, CCR-9875279, CCR-9820852, CCR-9900320

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alstrup, S., et al.: Marked Ancestor Problems. In: FOCS, pp. 534–544 (1998)

    Google Scholar 

  2. Ben-Amram, A.M., Galil, Z.: On Pointers versus Addresses. JACM 39(3) (1992)

    Google Scholar 

  3. Blum, N.: On the single-operation worst-case time complexity of the disjoint set union problem. SIAM Journal on Computing 15(4), 1021–1024 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cole, R., Hariharan, R.: Dynamic LCA Queries on Trees. In: SODA. ACM, New York (1999)

    Google Scholar 

  5. Dal Palù, A., et al.: An Optimal Algorithm for NCA on PPMs. In: SWAT (2002)

    Google Scholar 

  6. Drakos, N.: Unrestricted And-Parallel Execution of Logic Programs with Dependency Directed Backtracking. In: IJCAI, pp. 157–162. Morgan Kaufmann, San Francisco (1989)

    Google Scholar 

  7. Gabow, H.N., Tarjan, R.E.: A Linear-time Algorithm for a Special Case of Disjoint Set Union. Journal of Computer and System Sciences 30, 209–221 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gupta, G., et al.: Parallel Execution of Prolog Programs. TOPLAS 23(4) (2001)

    Google Scholar 

  9. Pontelli, E., et al.: Implementation Mechanisms for DAP. In: ICLP. MIT Press, Cambridge (1997)

    Google Scholar 

  10. Pontelli, E., et al.: An Optimal Data Structure to Handle Dynamic Environments in Non-Deterministic Computations. Computer Languages 28(2) (2002)

    Google Scholar 

  11. Pontelli, E., Ranjan, D., Gupta, G.: On the Complexity of Parallel Implementation of Logic Programs. In: FSTTCS, pp. 123–137. Springer, Heidelberg (1997)

    Google Scholar 

  12. Ranjan, D., et al.: The Temporal Precedence Problem. Algorithmica 28 (2000)

    Google Scholar 

  13. Shen, K.: Exploiting Dependent And-parallelism in Prolog. In: JICSLP. MIT, Cambridge (1992)

    Google Scholar 

  14. Tarjan, R.E.: A Class of Algorithms which Require Nonlinear Time to Maintain Disjoint Sets. Journal of Computer and System Sciences 2(18), 110–127 (1979)

    Article  MathSciNet  Google Scholar 

  15. Tebra, H.: Optimistic And-Parallelism in Prolog. In: PARLE. Springer, Heidelberg (1987)

    Google Scholar 

  16. Tsakalidis, A.: Maintaining Order in a Generalized Linked List. ACTA Informatica 21, 101–112 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  17. van Emde Boas, P., et al.: Design and Implementation of an Efficient Priority Queue. Mathematical Systems Theory 10 (1977)

    Google Scholar 

  18. Villaverde, K., et al.: A Methodology for Order-sensitive Execution of Nondeterministic Languages on Beowulf Platforms. In: Euro-Par. Springer, Heidelberg (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, Y., Pontelli, E., Ranjan, D. (2003). On the Complexity of Dependent And-Parallelism in Logic Programming. In: Palamidessi, C. (eds) Logic Programming. ICLP 2003. Lecture Notes in Computer Science, vol 2916. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24599-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24599-5_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20642-2

  • Online ISBN: 978-3-540-24599-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics