Abstract
Incomplete MaxSAT solving aims to quickly find a solution that attempts to minimize the sum of the weights of the unsatisfied soft clauses without providing any optimality guarantees. In this paper, we propose two approximation strategies for improving incomplete MaxSAT solving. In one of the strategies, we cluster the weights and approximate them with a representative weight. In another strategy, we break up the problem of minimizing the sum of weights of unsatisfiable clauses into multiple minimization subproblems. Experimental results show that approximation strategies can be used to find better solutions than the best incomplete solvers in the MaxSAT Evaluation 2017.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
For simplicity, we will assume that \(\varphi _h\) is always satisfiable.
- 2.
\(best(\varphi )\) is the cost of the best solution found by any solver in this evaluation.
- 3.
We consider a score of 0 if \(\mathcal S\) did not find any solution to \(\varphi \).
- 4.
References
Alviano, M., Dodaro, C., Ricca, F.: A MaxSAT algorithm using cardinality constraints of bounded size. In: Proceedings of International Joint Conference on Artificial Intelligence, pp. 2677–2683. AAAI Press (2015)
Ansótegui, C., Bacchus, F., Järvisalo, M., Martins, R.: MaxSAT Evaluation 2017 (2017). http://mse17.cs.helsinki.fi/. Accessed 18 Apr 2017
Ansótegui, C., Bonet, M.L., Gabà s, J., Levy, J.: Improving SAT-based weighted MaxSAT solvers. In: Milano, M. (ed.) CP 2012. LNCS, pp. 86–101. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33558-7_9
Ansótegui, C., Gabà s, J.: WPM3: an (in)complete algorithm for weighted partial MaxSAT. Artif. Intell. 250, 37–57 (2017)
Argelich, J., Le Berre, D., Lynce, I., Marques-Silva, J., Rapicault, P.: Solving linux upgradeability problems using Boolean optimization. In: Proceedings of Workshop on Logics for Component Configuration, pp. 11–22. EPTCS (2010)
Argelich, J., Li, C.M., Manyà , F., Planes, J.: MaxSAT Evaluation 2016 (2016). http://maxsat.ia.udl.cat/. Accessed 18 Apr 2016
Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers. In: Proceedings of International Joint Conference on Artificial Intelligence, pp. 399–404. AAAI Press (2009)
Le Berre, D., Parrain, A.: The SAT4J library, release 2.2. JSAT 7(2–3), 59–64 (2010)
Cai, S., Luo, C., Thornton, J., Su, K.: Tailoring local search for partial MaxSat. In: Proceedings of AAAI Conference on Artificial Intelligence, pp. 2623–2629. AAAI Press (2014)
Cai, S., Luo, C., Zhang, H., From decimation to local search and back: a new approach to MaxSAT. In: Proceedings of AAAI Conference on Artificial Intelligence, pp. 571–577. AAAI Press (2017)
Davies, J., Bacchus, F.: Solving MAXSAT by solving a sequence of simpler SAT instances. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 225–239. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23786-7_19
Eén, N., Sörensson, N.: Translating pseudo-Boolean constraints into SAT. JSAT 2(1–4), 1–26 (2006)
Fan, Y., Ma, Z., Kaile, S., Sattar, A., Li, C.: Ramp: a local search solver based on make-positive variables. In: Proceedings of MaxSAT Evaluation (2016)
Feng, Y., Bastani, O., Martins, R., Dillig, I., Anand, S.: Automated synthesis of semantic malware signatures using maximum satisfiability. In: Proceedings of Network and Distributed System Security Symposium (2017)
Johnson, S.C.: Hierarchical clustering schemes. Psychometrika 32(3), 241–254 (1967)
Jose, M., Majumdar, R.: Cause clue clauses: error localization using maximum satisfiability. In: Proceedings of Conference on Programming Language Design and Implementation, pp. 437–446. ACM (2011)
Joshi, S., Martins, R., Manquinho, V.: Generalized totalizer encoding for pseudo-Boolean constraints. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 200–209. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23219-5_15
Koshimura, M., Zhang, T., Fujita, H., Hasegawa, R.: QMaxSAT: a partial Max-SAT solver. JSAT 8(1/2), 95–100 (2012)
Luo, C., Cai, S., Kaile, S., Huang, W.: CCEHC: an efficient local search algorithm for weighted partial maximum satisfiability. Artif. Intell. 243, 26–44 (2017)
Luo, C., Cai, S., Wei, W., Jie, Z., Kaile, S.: CCLS: an efficient local search algorithm for weighted maximum satisfiability. IEEE Trans. Comput. 64(7), 1830–1843 (2015)
Marques-Silva, J., Argelich, J., Graça, A., Lynce, I.: Boolean lexicographic optimization: algorithms & applications. Ann. Math. Artif. Intell. 62(3–4), 317–343 (2011)
Martins, R., Joshi, S., Manquinho, V., Lynce, I.: Incremental Cardinality Constraints for MaxSAT. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 531–548. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10428-7_39
Martins, R., Manquinho, V., Lynce, I.: Open-WBO: a modular MaxSAT solver’. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 438–445. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09284-3_33
Morgado, A., Dodaro, C., Marques-Silva, J.: Core-guided MaxSAT with soft cardinality constraints. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 564–573. Springer, Cham (2014)
Saikko, P., Berg, J., Järvisalo, M.: LMHS: a SAT-IP hybrid MaxSAT solver. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 539–546. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2_34
Sugawara, T.: MaxRoster: solver description. In: Proceedings MaxSAT Evaluation 2017: Solver and Benchmark Descriptions, vol. B-2017-2, p. 12. University of Helsinki, Department of Computer Science (2017)
Warners, J.P.: A linear-time transformation of linear inequalities into conjunctive normal form. Inf. Process. Lett. 68(2), 63–69 (1998)
Acknowledgements
This work is partially funded by ECR 2017 grant from SERB, DST, India, NSF award #1762363 and CMU/AIR/0022/2017 grant. Authors would like to thank the anonymous reviewers for their helpful comments, and Saketha Nath for lending his servers for the experiments.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Joshi, S., Kumar, P., Martins, R., Rao, S. (2018). Approximation Strategies for Incomplete MaxSAT. In: Hooker, J. (eds) Principles and Practice of Constraint Programming. CP 2018. Lecture Notes in Computer Science(), vol 11008. Springer, Cham. https://doi.org/10.1007/978-3-319-98334-9_15
Download citation
DOI: https://doi.org/10.1007/978-3-319-98334-9_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-98333-2
Online ISBN: 978-3-319-98334-9
eBook Packages: Computer ScienceComputer Science (R0)