Skip to main content

Short-Term Load Forecasting Based on RBM and NARX Neural Network

  • Conference paper
  • First Online:
Intelligent Computing Methodologies (ICIC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10956))

Included in the following conference series:

  • 2581 Accesses

Abstract

In recent years, DBN applied to load forecasting as a hot issue has aroused the concern of many scholars at home and abroad. A new method based on RBM and NARX neural network for short-term load forecasting is brought forward in this paper. In order to test the performance of this model, the historical load data of a town in the UK is used. The obtained results are compared with DBN and NARX neural network based on the same dataset. Experimental results show that the proposed method significantly improves the predication accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, Y., Luh, P.B., Rourke, S.J.: Short-term load forecasting: similar day-based wavelet neural networks. World Congr. Intell. Control Autom. 25(1), 3353–3358 (2008)

    Google Scholar 

  2. Chen, C., Zhou, J.N.: Application of regression analysis in power system load forecasting. Adv. Mater. Res. 960–961, 1516–1522 (2014)

    Article  Google Scholar 

  3. Shankar, R., Chatterjee, K., Chatterjee, T.K.: A very short-term load forecasting using kalman filter for load frequency control with economic load dispatch. J. Eng. Sci. Technol. Rev. 5(1), 97–103 (2012)

    Google Scholar 

  4. Wei, L., Zhen-gang, Z.: Based on time sequence of ARIMA model in the application of short-term electricity load forecasting. In: International Conference on Research Challenges in Computer Science, pp. 11–14 (2009)

    Google Scholar 

  5. Vähäkyla, P., Hakonen, E., Léman, P.: Short-term forecasting of grid load using Box-Jenkins techniques. Int. J. Electr. Power Energy Syst. 2(1), 29–34 (1980)

    Article  Google Scholar 

  6. Li, X., Chen, H., Gao, S.: Electric power system load forecast model based on State Space time-varying parameter theory. In: IEEE International Conference on Power System Technology, pp. 1–4 (2010)

    Google Scholar 

  7. Christiaanse, W.R.: Short-term load forecasting using general exponential smoothing. IEEE Trans. Power Appar. Syst. PAS-90, 900–911(2007)

    Article  Google Scholar 

  8. Koo, B.G., Kim, M.S., Kim, K.H.: Short-term electric load forecasting using data mining technique. In: International Conference on Intelligent Systems and Control, pp. 153–157. IEEE (2013)

    Google Scholar 

  9. Lee, K.Y., Cha, Y.T., Park, J.H.: Short-term load forecasting using artificial neural networks. IEEE Trans. Power Syst. 7(1), 124–132 (2014)

    Article  Google Scholar 

  10. Li, G., Cheng, C.T., Lin, J.Y.: Short-term load forecasting using support vector machine with SCE-UA algorithm. In: International Conference on Natural Computation, pp. 290–294. IEEE (2007)

    Google Scholar 

  11. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527 (2006)

    Article  MathSciNet  Google Scholar 

  12. Sun, S., Liu, F., Liu, J.: Web classification using deep belief networks. In: IEEE International Conference on Computational Science and Engineering, pp. 768–773 (2014)

    Google Scholar 

  13. Arsa, D.M.S., Jati, G., Mantau, A.J.: Dimensionality reduction using deep belief network in big data case study: hyperspectral image classification. In: International Workshop on Big Data and Information Security, pp. 71–76. IEEE (2017)

    Google Scholar 

  14. Cheng, M.: The cross-field DBN for image recognition. In: IEEE International Conference on Progress in Informatics and Computing, pp. 83–86. IEEE (2016)

    Google Scholar 

  15. Zhang, X., Wang, R., Zhang, T.: Short-term load forecasting based on an improved deep belief network. In: International Conference on Smart Grid and Clean Energy Technologies, pp. 339–342 (2016)

    Google Scholar 

  16. Zhang, X., Wang, R., Zhang, T., Liu, Y., Zha, Y.: Effect of transfer functions in deep belief network for short-term load forecasting. In: He, C., Mo, H., Pan, L., Zhao, Y. (eds.) BIC-TA 2017. CCIS, vol. 791, pp. 511–522. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-7179-9_40

    Chapter  Google Scholar 

  17. Takens F.: Detecting strange attractors in turbulence. In: Dynamical Systems and Turbulence, Warwick 1980, pp. 366–381. Springer, Heidelberg (1981)

    Google Scholar 

  18. Hegger, R., Kantz, H., Schreiber, T.: Practical implementation of nonlinear time series methods: the tisean package. Chaos 9(2), 413–435 (1999)

    Article  Google Scholar 

  19. Nonlinear Time Series Analysis (TISEAN). https://www.mpipks-dresden.mpg.de/~tisean/

  20. Wang, R., Purshouse, R.C., Fleming, P.J.: Preference-inspired co-evolutionary algorithms for many-objective optimisation. IEEE Trans. Evol. Comput. 17, 474–494 (2013)

    Article  Google Scholar 

  21. Wang, R., Ishibuchi, H., Zhou, Z., Liao, T., Zhang, T.: Localized weighted sum method for many-objective optimization. IEEE Trans. Evol. Comput. 22, 3–18 (2018)

    Article  Google Scholar 

  22. Wang, R., Zhang, Q., Zhang, T.: Decomposition based algorithms using Pareto adaptive scalarizing methods. IEEE Trans. Evol. Comput. 20, 821–837 (2016)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Nos. 61773390, 71571187) and the Distinguished Natural Science Foundation of Hunan Province (No. 2017JJ1001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, X., Wang, R., Zhang, T., Wang, L., Liu, Y., Zha, Y. (2018). Short-Term Load Forecasting Based on RBM and NARX Neural Network. In: Huang, DS., Gromiha, M., Han, K., Hussain, A. (eds) Intelligent Computing Methodologies. ICIC 2018. Lecture Notes in Computer Science(), vol 10956. Springer, Cham. https://doi.org/10.1007/978-3-319-95957-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95957-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95956-6

  • Online ISBN: 978-3-319-95957-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics