Abstract
Detection of text in natural scene images is very challenging, and it is not completely solved. In this work we propose a fast and reliable algorithm to generate synthetic data of Chinese characters in images. The proposed algorithm make the text content cover the background in a natural way. To validate the proposed method effective, another dataset are generated by ordinary fusion method. Two dataset are used to train Faster-RCNN network. And the experimental result shows that the dataset are generated by proposed method achieve a better performance of detection than the normal way.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ren, S., He, K., Girshick, R., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. In: International Conference on Neural Information Processing Systems, pp. 91–99. MIT Press (2015)
Geng, Y., Liang, R.Z., Li, W., et al.: Learning convolutional neural network to maximize Pos@Top performance measure (2016)
Geng, Y., et al.: A novel image tag completion method based on convolutional neural transformation. In: Lintas, A., Rovetta, S., Verschure, P.F.M.J., Villa, A.E.P. (eds.) ICANN 2017. LNCS, vol. 10614, pp. 539–546. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68612-7_61
Zhang, G., et al.: Learning convolutional ranking-score function by query preference regularization. In: Yin, H., et al. (eds.) IDEAL 2017. LNCS, vol. 10585, pp. 1–8. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68935-7_1
Gupta, A., Vedaldi, A., Zisserman, A.: Synthetic data for text localization in natural images, 2315–2324 (2016)
Wang, T., Wu, D.J., Coates, A., Ng, A.Y.: End-to-end text recognition with convolutional neural networks. In: Proceedings ICPR, pp. 3304–3308 (2012)
Jaderberg, M., Simonyan, K., Vedaldi, A., Zisserman, A.: Synthetic data and artificial neural networks for natural scene text recognition. In: Workshop on Deep Learning, NIPS (2014)
Dosovitskiy, A., Fischery, P., Ilg, E., et al.: FlowNet: learning optical flow with convolutional networks. In: IEEE International Conference on Computer Vision, pp. 2758–2766. IEEE Computer Society (2015)
Dosovitskiy, A., Brox, T.: Inverting visual representations with convolutional networks, pp. 4829–4837 (2015)
Yildirim, I., Kulkarni, T., Freiwald, W., et al.: Efficient analysis-by-synthesis in vision: a computational framework, behavioral tests, and comparison with neural representations. In: Conference of the Cognitive Science Society (2015)
Jaderberg, M., Vedaldi, A., Zisserman, A.: Deep features for text spotting. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 512–528. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_34
Ozuysal, O.M., Fua, P., Lepetit, V.: Fast keypoint recognition in ten lines of code. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1–8. DBLP (2007)
Wang, K., Babenko, B., Belongie, S.: End-to-end scene text recognition. In: IEEE International Conference on Computer Vision, pp. 1457–1464. IEEE (2012)
Alsharif, O., Pineau, J.: End-to-end text recognition with hybrid HMM maxout model. Comput. Sci. (2013)
Bissacco, A., Cummins, M., Netzer, Y., et al.: PhotoOCR: reading text in uncontrolled conditions. In: IEEE International Conference on Computer Vision, pp. 785–792. IEEE (2014)
Szegedy, C., Toshev, A., Erhan, D.: Deep neural networks for object detection. Adv. Neural. Inf. Process. Syst. 26, 2553–2561 (2013)
Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: OverFeat: integrated recognition, localization and detection using convolutional networks. In: ICLR (2014)
Erhan, D., Szegedy, C., Toshev, A., et al.: Scalable object detection using deep neural networks. 3(4), 2155–2162 (2013)
Szegedy, C., Reed, S., Erhan, D., et al.: Scalable, high-quality object detection. Comput. Sci. (2014)
Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR (2014)
Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE PAMI 33, 898–916 (2011)
Liu, C.S., Lin, G.: Deep convolutional neural fields for depth estimation from a single image. In: Proceedings CVPR (2015)
Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Comm. ACM 24(6), 381–395 (1981)
Acknowledge
This work is supported by Anhui Provincial Natural Science Foundation (grant number 1608085MF136).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Gao, Ww., Zhang, J., Chen, P., Wang, B., Xia, Y. (2018). Chinese Text Detection Using Deep Learning Model and Synthetic Data. In: Huang, DS., Bevilacqua, V., Premaratne, P., Gupta, P. (eds) Intelligent Computing Theories and Application. ICIC 2018. Lecture Notes in Computer Science(), vol 10954. Springer, Cham. https://doi.org/10.1007/978-3-319-95930-6_46
Download citation
DOI: https://doi.org/10.1007/978-3-319-95930-6_46
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-95929-0
Online ISBN: 978-3-319-95930-6
eBook Packages: Computer ScienceComputer Science (R0)