Skip to main content

A Firefly Algorithm Based Wrapper-Penalty Feature Selection Method for Cancer Diagnosis

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2018 (ICCSA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10960))

Included in the following conference series:

  • 1854 Accesses

Abstract

Advances in cancer diagnosis methods have led to the development of highly accurate, detailed and voluminous data. Unfortunately, high dimensional data often leads to poor accuracy and high processing time. Swarm intelligence based feature selection methods have been highly efficient in the biomedical domain, which motivates the exploration of more adaptive and newer wrapper based methods such as the Firefly algorithm. This paper explores the inclusion of a penalty function to the existing fitness function promoting the Binary Firefly Algorithm to drastically reduce the feature set to an optimal subset, and shows an increase in both classification accuracy as well as feature reduction using a Random Forest classifier for the diagnosis of Breast, Cervical and Hepatocellular Carcinoma - Liver Cancer by the proposed method in comparison to other contemporary methods such as those based on Deep Learning, Information Gain and others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3(Mar), 1157–1182 (2003)

    MATH  Google Scholar 

  2. Yang, X.-S.: Firefly algorithms for multimodal optimization. In: Watanabe, O., Zeugmann, T. (eds.) SAGA 2009. LNCS, vol. 5792, pp. 169–178. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04944-6_14

    Chapter  Google Scholar 

  3. Soto, C., Valdez, F., Castillo, O.: A review of dynamic parameter adaptation methods for the firefly algorithm. In: Melin, P., Castillo, O., Kacprzyk, J. (eds.) Nature-Inspired Design of Hybrid Intelligent Systems. SCI, vol. 667, pp. 285–295. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-47054-2_19

    Chapter  Google Scholar 

  4. Danaei, G., Vander Hoorn, S., Lopez, A.D., Murray, C.J., Ezzati, M., Comparative Risk Assessment collaborating group (Cancers), et al.: Causes of cancer in the world: comparative risk assessment of nine behavioural and environmental risk factors. Lancet 366(9499), 1784–1793 (2005)

    Google Scholar 

  5. Bruix, J., Sherman, M.: Management of hepatocellular carcinoma: an update. Hepatology 53(3), 1020–1022 (2011)

    Article  Google Scholar 

  6. Brinton, L.A., Hamman, R.F., Huggins, G.R., Lehman, H.F., Levine, R.S., Mailin, K., Fraumeni Jr., J.F.: Sexual and reproductive risk factors for invasive squamous cell cervical cancer. J. Natl Cancer Inst. 79(1), 23–30 (1987)

    Google Scholar 

  7. Slattery, M.L., Robison, L.M., Schuman, K.L., French, T.K., Abbott, T.M., Overall, J.C., Gardner, J.W.: Cigarette smoking and exposure to passive smoke are risk factors for cervical cancer. Jama 261(11), 1593–1598 (1989)

    Article  Google Scholar 

  8. Bosch, F., Munoz, N., De Sanjosé, S., Izarzugaza, I., Gili, M., Viladiu, P., Tormo, M., Moreo, P., Ascunce, N., Gonzalez, L., et al.: Risk factors for cervical cancer in Colombia and Spain. Int. J. Cancer 52(5), 750–758 (1992)

    Article  Google Scholar 

  9. Chandrashekar, G., Sahin, F.: A survey on feature selection methods. Comput. Electr. Eng. 40(1), 16–28 (2014)

    Article  Google Scholar 

  10. Vafaie, H., De Jong, K.: Genetic algorithms as a tool for feature selection in machine learning. In: Proceedings of the Fourth International Conference on Tools with Artificial Intelligence, TAI 1992, pp. 200–203. IEEE (1992)

    Google Scholar 

  11. Saeys, Y., Inza, I., Larrañaga, P.: A review of feature selection techniques in bioinformatics. Bioinformatics 23(19), 2507–2517 (2007)

    Article  Google Scholar 

  12. Cruz, J.A., Wishart, D.S.: Applications of machine learning in cancer prediction and prognosis. Cancer Inform. 2, 117693510600200030 (2006). https://doi.org/10.1177/117693510600200030

    Article  Google Scholar 

  13. Chen, H.L., Yang, B., Liu, J., Liu, D.Y.: A support vector machine classifier with rough set-based feature selection for breast cancer diagnosis. Expert Syst. Appl. 38(7), 9014–9022 (2011)

    Article  Google Scholar 

  14. Kabir, M.M., Shahjahan, M., Murase, K.: A new hybrid ant colony optimization algorithm for feature selection. Expert Syst. Appl. 39(3), 3747–3763 (2012)

    Article  Google Scholar 

  15. Rodrigues, D., Pereira, L.A., Almeida, T., Papa, J.P., Souza, A., Ramos, C.C., Yang, X.S.: BCS: a binary cuckoo search algorithm for feature selection. In: 2013 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 465–468. IEEE (2013)

    Google Scholar 

  16. Nakamura, R.Y., Pereira, L.A., Costa, K., Rodrigues, D., Papa, J.P., Yang, X.S.: BBA: a binary bat algorithm for feature selection. In: 2012 25th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp. 291–297. IEEE (2012)

    Google Scholar 

  17. Łukasik, S., Żak, S.: Firefly algorithm for continuous constrained optimization tasks. In: Nguyen, N.T., Kowalczyk, R., Chen, S.-M. (eds.) ICCCI 2009. LNCS (LNAI), vol. 5796, pp. 97–106. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04441-0_8

    Chapter  Google Scholar 

  18. Basu, B., Mahanti, G.: Thinning of concentric two-ring circular array antenna using fire fly algorithm. Scientia Iranica 19(6), 1802–1809 (2012)

    Article  Google Scholar 

  19. Wolberg, W.H., Mangasarian, O.L.: Multisurface method of pattern separation for medical diagnosis applied to breast cytology. Proc. Nat. Acad. Sci. 87(23), 9193–9196 (1990)

    Article  Google Scholar 

  20. Zhang, J.: Selecting typical instances in instance-based learning. In: Machine Learning Proceedings 1992, pp. 470–479. Elsevier (1992)

    Chapter  Google Scholar 

  21. Fernandes, K., Cardoso, J.S., Fernandes, J.: Transfer learning with partial observability applied to cervical cancer screening. In: Alexandre, L.A., Salvador Sánchez, J., Rodrigues, J.M.F. (eds.) IbPRIA 2017. LNCS, vol. 10255, pp. 243–250. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58838-4_27

    Chapter  Google Scholar 

  22. Santos, M.S., Abreu, P.H., García-Laencina, P.J., Simão, A., Carvalho, A.: A new cluster-based oversampling method for improving survival prediction of hepatocellular carcinoma patients. J. Biomed. Inform. 58, 49–59 (2015)

    Article  Google Scholar 

  23. Fister, I., Fister Jr., I., Yang, X., Brest, J.: A comprehensive review of firefly algorithms. CoRR abs/1312.6609 (2013). http://arxiv.org/abs/1312.6609

  24. Mirjalili, S., Lewis, A.: S-shaped versus v-shaped transfer functions for binary particle swarm optimization 9, 1–14 (2013)

    Google Scholar 

  25. Wang, X., Yang, J., Teng, X., Xia, W., Jensen, R.: Feature selection based on rough sets and particle swarm optimization. Pattern Recogn. Lett. 28(4), 459–471 (2007)

    Article  Google Scholar 

  26. Bonyadi, M.R., Michalewicz, Z.: Particle swarm optimization for single objective continuous space problems: a review (2017)

    Article  Google Scholar 

  27. Donoho, D.L., et al.: High-dimensional data analysis: the curses and blessings of dimensionality. AMS Math Chall. Lect. 1, 32 (2000)

    Google Scholar 

  28. Li, W., Shi, T., Liao, G., Yang, S.: Feature extraction and classification of gear faults using principal component analysis. J. Qual. Maint. Eng. 9(2), 132–143 (2003)

    Article  Google Scholar 

  29. Manjarres, D., Landa-Torres, I., Gil-Lopez, S., Del Ser, J., Bilbao, M.N., Salcedo-Sanz, S., Geem, Z.W.: A survey on applications of the harmony search algorithm. Eng. Appl. Artif. Intell. 26(8), 1818–1831 (2013)

    Article  Google Scholar 

  30. Xue, B., Zhang, M., Browne, W.N.: Particle swarm optimization for feature selection in classification: a multi-objective approach. IEEE Trans. Cybern. 43(6), 1656–1671 (2013)

    Article  Google Scholar 

  31. Mirjalili, S.: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 89, 228–249 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramit Sawhney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sawhney, R., Mathur, P., Shankar, R. (2018). A Firefly Algorithm Based Wrapper-Penalty Feature Selection Method for Cancer Diagnosis. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2018. ICCSA 2018. Lecture Notes in Computer Science(), vol 10960. Springer, Cham. https://doi.org/10.1007/978-3-319-95162-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95162-1_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95161-4

  • Online ISBN: 978-3-319-95162-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics