Abstract
Binary versions of evolutionary algorithms have emerged as alternatives to the state of the art methods for optimization in binary search spaces due to their simplicity and inexpensive computational cost. The adaption of such a binary version from an evolutionary algorithm is based on a transfer function that maps a continuous search space to a discrete search space. In an effort to identify the most efficient combination of transfer functions and algorithms, we investigate binary versions of Gravitational Search, Bat Algorithm, and Dragonfly Algorithm along with two families of transfer functions in unimodal and multimodal single objective optimization problems. The results indicate that the incorporation of the v-shaped family of transfer functions in the Binary Bat Algorithm significantly outperforms previous methods in this domain.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Larrañaga, P., Lozano, J.A.: Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation, vol. 2. Springer, New York (2001)
Kennedy, J.: Particle swarm optimization. In: Encyclopedia of Machine Learning, pp. 760–766. Springer (2011)
Tsamardinos, I., Brown, L.E., Aliferis, C.F.: The max-min hill-climbing Bayesian network structure learning algorithm. Mach. Learn. 65(1), 31–78 (2006)
Ritthof, O., Klinkenberg, R., Fischer, S., Mierswa, I.: A hybrid approach to feature selection and generation using an evolutionary algorithm. In: UK Workshop on Computational Intelligence, pp. 147–154 (2002)
Raymer, M.L., Punch, W.F., Goodman, E.D., Kuhn, L.A., Jain, A.K.: Dimensionality reduction using genetic algorithms. IEEE Trans. Evol. Comput. 4(2), 164–171 (2000)
Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)
Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: BGSA: binary gravitational search algorithm. Nat. Comput. 9(3), 727–745 (2010)
Yang, X.S.: A new metaheuristic bat-inspired algorithm. In: Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), pp. 65–74. Springer (2010)
Mirjalili, S., Mirjalili, S.M., Yang, X.S.: Binary bat algorithm. Neural Comput. Appl. 25(3–4), 663–681 (2014)
Mirjalili, S.: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 27(4), 1053–1073 (2016)
Mirjalili, S., Lewis, A.: S-shaped versus v-shaped transfer functions for binary particle swarm optimization. Swarm Evol. Comput. 9, 1–14 (2013). http://www.sciencedirect.com/science/article/pii/S2210650212000648
Suganthan, P., Hansen, N., Liang, J., Deb, K., Chen, Y.p., Auger, A., Tiwari, S.: Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization, pp. 341–357, January 2005
Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S.: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 10(3), 281–295 (2006)
Mendes, R., Kennedy, J., Neves, J.: The fully informed particle swarm: simpler, maybe better. IEEE Trans. Evol. Comput. 8(3), 204–210 (2004)
Liang, J.J., Suganthan, P.N.: Dynamic multi-swarm particle swarm optimizer with local search. In: The 2005 IEEE Congress on Evolutionary Computation, vol. 1, pp. 522–528. IEEE (2005)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Sawhney, R., Shankar, R., Jain, R. (2019). A Comparative Study of Transfer Functions in Binary Evolutionary Algorithms for Single Objective Optimization. In: De La Prieta, F., Omatu, S., Fernández-Caballero, A. (eds) Distributed Computing and Artificial Intelligence, 15th International Conference. DCAI2018 2018. Advances in Intelligent Systems and Computing, vol 800. Springer, Cham. https://doi.org/10.1007/978-3-319-94649-8_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-94649-8_4
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-94648-1
Online ISBN: 978-3-319-94649-8
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)