Abstract
Microorganisms play very important roles in people’s daily life. To discover the information of them is a fundamental work in microbiological studies, which can assist microbiologists and related scientists to get to know more properties, habits and characteristics of these tiny but obbligato living beings. To this end, effective Content-based Microorganism Image Analysis (CBMIA) approaches using Artificial Neural Networks (ANNs) are introduced to microbiological fields from the 1990s. In order to clarify the development history and find the developing trend of ANNs in the CBMIA field, we briefly survey around 60 related works in this paper, including classical ANNs, deep ANNs and methodology analysis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
DGM LIB: Semantic Image Segmentation with Conditional Random Fields. 2018, Available at: http://research.project-10.de/dgm/.
References
Amaral, A.L., Ginoris, Y.P., Nicolau, A., Coelho, M.A.Z., Ferreira, E.C.: Stalked protozoa identification by image analysis and multivariable statistical techniques. Anal. Bioanal. Chem. 319(4), 1321–1325 (2008)
Ayas, S., Ekinci, M.: Random forest-based tuberculosis bacteria classification in images of ZN-stained sputum smear samples. SIViP 8(1), 49–61 (2014)
Balfoort, H.W., Snoek, J., Smits, J.R.M., Breedveld, L.W., Hofstraat, J.W., Ringelberg, J.: Automatic identification of algae: neural network analysis of flow cytometric data. J. Plankton Res. 14(4), 575–589 (1992)
Beaufort, L., Dollfus, D.: Automatic recognition of coccoliths by dynamical neural networks. Mar. Micropaleontol. 51(1–2), 57–73 (2004)
Blackburn, N., Hagstrom, A., Wikner, J., Cuadros-Hansson, R., Bjornsen, P.K.: Rapid determination of bacterial abundance, biovolume, morphology, and growth by neural network-based image analysis. Appl. Environ. Microbiol. 64(9), 3246–3255 (1998)
Chang, C., Lin, C.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 3(2), 1–27 (2011)
Chen, C., Li, X.: A new wastewater bacteria classification with microscopic image analysis. In: WSEAS International Conference on Computers, pp. 915–921 (2008)
Coltelli, P., Barsanti, L., Evangelista, V., Frassanito, A.M., Gualtieri, P.: Water monitoring: automated and real time identification and classification of algae using digital microscopy. Environ. Sci. Process. Impacts 16(11), 2656–2665 (2014)
Coltelli, P., Barsanti, L., Evangelista, V., Frassanito, A.M., Gualtieri, P.: Reconstruction of the absorption spectrum of an object spot from the colour values of the corresponding pixel(s) in its digital image: the challenge of algal colours. J. Microsc. 264(3), 311–320 (2016)
Culverhouse, P., Herry, V., Parisini, T., Williams, R., Reguera, B., Gonzalez-Gil, S., Fonda, S., Cabrini, M.: DiCANN: a machine vision solution to biological specimen categorisation. In: Proceedings of the EurOCEAN 2000 Conference, pp. 239–240 (2000)
Culverhouse, P.F., Ellis, R., Simpson, R.G., Williams, R., Pierce, R.W., Turner, J.T.: Automatic categorisation of five species of cymatocylis (protozoa, tintinnida) by artificial neural network. Mar. Ecol. Prog. Ser. 107, 273–280 (1994)
Culverhouse, P.F., Simpson, R.G., Ellis, R., Lindley, J.A., Williams, R., Parsini, T., Reguera, B., Bravo, I., Zoppoli, R., Earnshaw, G., McCall, H., Smith, G.C.: Automatic classification of field-collected dinoflagellates by artificial neural network. Mar. Ecol. Prog. Ser. 139(1–3), 281–287 (1996)
Dieleman, S.: Classifying plankton with deep neural networks (2015). https://benanne.github.io/2015/03/17/plankton.html
Dorado, A.P.: Automatic recognition of diatoms and its applications to the study of water quality. Ph.D. Dissertation in the Universidad de Castilla-La Mancha (2016)
Embleton, K.V., Gibson, C.E., Heaney, S.I.: Automated counting of phytoplankton by pattern recognition: a comparison with a manual counting method. J. Plankton Res. 25(6), 669–681 (2003)
Ferreira, T., Rasband, W.: Image user guide (2012). https://imagej.nih.gov/ij/docs/guide/user-guide-USbooklet.pdf
Filho, C.F.F.C., Levy, P.C., Xavier, C.D.M., Fujimoto, L.B.M., Costa, M.G.F.: Automatic identifi cation of tuberculosis mycobacterium. Res. Biomed. Eng. 31(1), 33–43 (2015)
Gerlach, S.R., Siedenberg, D., Gerlach, D., Schtigerl, K., Giuseppin, M.L.F., Hunik, J.: Influence of reactor systems on the morphology of aspergillus awamori. application of neural network and cluster analysis for characterization of fungal morphology. ProceAs Biochem. 33(6), 601–615 (1998)
Ginoris, Y.P., Amaral, A.L., Nicolau, A., Ferreira, E.C., Coelho, M.A.Z.: Recognition of protozoa and metazoa using image analysis tools, discriminant analysis and neural network. In: International Conference on Chemometrics in Analytical Chemistry, p. 1 (2006)
Guo, G., Dyer, C.R.: Learning from examples in the small sample case: face expression recognition. Syst. Man Cybern. Part B: Cybern. 35(3), 477–488 (2005)
Hiremath, P.S., Bannigidad, P.: Automatic classification of bacterial cells in digital microscopic images. Int. J. Eng. Technol. 2(4), 9–15 (2009)
Hiremath, P.S., Bannigidad, P.: Automatic identification and classification of bacilli bacterial cell growth phases. Int. J. Comput. Appl. 1, 48–52 (2010). Special Issue on RTIPPR
Hiremath, P.S., Bannigidad, P.: Digital image analysis of Cocci bacterial cells using active contour method. In: International Conference on Signal and Image Processing, pp. 163–168 (2010)
Hiremath, P.S., Bannigidad, P.: Digital microscopic image analysis of spiral bacterial cell groups. In: International Conference on Intelligent Systems & Data Processing, pp. 209–213 (2011)
Hiremath, P.S., Bannigidad, P.: Identification and classification of cocci bacterial cells in digital microscopic images. Int. J. Comput. Biol. Drug Des. 4(3), 262–273 (2011)
Hiremath, P.S., Bannigidad, P.: Spiral bacterial cell image analysis using active contour method. Int. J. Comput. Appl. 37(8), 5–9 (2012)
Hu, Q.: Application of statistical learning theory to plankton image analysis. Ph.D. Dissertation in the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution (2006)
Hu, Q., Davis, C.: Accurate automatic quantification of taxa-specific plankton abundance using dual classification with correction. Mar. Ecol. Prog. Ser. 306, 51–61 (2006)
Kay, J.W., Shinn, A.P., Sommerville, C.: Towards an automated system for the identification of notifiable pathogens: using gyrodactylus salaris as an example. Parasitol. Today 15(5), 201–206 (1999)
Kiranyaz, S., Ince, T., Pulkkinen, J., Gabbouj, M., Arje, J., Karkkainen, S., Tirronen, V., Juhola, M., Turpeinen, T., Meissner, K.: Classification and retrieval on macroinvertebrate image databases. Comput. Biol. Med. 41(7), 463–472 (2011)
Kosov, S., Shirahama, K., Li, C., Grzegorzek, M.: Environmental microorganism classification using conditional random fields and deep convolutional neural networks. Pattern Recogn. p (2017)
Kramer, K.A.: Identifying plankton from grayscale silhouette images. Master thesis in University of South Florida (2005)
Kruk, M., Kozera, R., Osowski, S., Trzcinski, P., Paszt, L.S., Sumorok, B., Borkowski, B.: Computerized classification system for the identification of soil microorganisms. AIP Conf. Proc. 1648(660018), 1–4 (2015)
Kruk, M., Kozera, R., Osowski, S., Trzcinski, P., Sas-Paszt, L., Sumorok, B., Borkowski, B.: Computerized classification systemfor the identification of soil microorganisms. Appl. Mathe. Inf. Sci. 10(1), 21–31 (2016)
Li, C.: Content-Based Microscopic Image Analysis. Logos Verlag Berlin GmbH, Berlin (2016)
Li, C., Wang, K., Xu, N.: A survey for the applications of content-based microscopic image analysis in microorganism classification domains. Artif. Intell. Rev. p (2017)
Li, X., Chen, C.: A novel bacteria recognition method based on microscopic image analysis. New Zealand J. Agric. Res. 50(5), 697–703 (2007)
Li, X., Chen, C.: A novel wastewater bacteria recognition method based on microscopic image analysis. In: WSEAS International Conference on Circuits, Systems, Electronics, Control and Signal Processing, pp. 265–271 (2008)
Li, X., Chen, C.: An improved BP neural network for wastewater bacteria recognition based on microscopic image analysis. WSEAS Trans. Comput. 8(2), 237–247 (2009)
Li, X., Chen, C., Yv, Z.: A novel bacteria classification scheme based on microscopic image analysis. In: WSEAS International Conference on Applied Computer Science, pp. 447–451 (2007)
Mosleh, M.A., Manssor, H., Malek, S., Milow, P., Salleh, A.: A preliminary study on automated freshwater algae recognition and classification system. BMC Bioinf. 13(Suppl 17), 1–13 (2012)
Nie, D., Shank, E.A., Jojic, V.: A deep framework for bacterial image segmentation and classification. In: ACM Conference on Bioinformatics, Computational Biology and Health Informatics, pp. 306–314 (2015)
Nielsen, M.A.: Neural Networks and Deep Learning. Determination Press (2015)
Orlov, N., Johnston, J., Macura, T., Shamir, L., Goldberg, I.: Computer vision for microscopy applications. In: Obinata, G., Dutta, A. (eds.) Vision Systems: Segmentation and Pattern Recognition, pp. 222–242. I-Tech, Austria (2007)
Osman, M.K., Mashor, M.Y., Jaafar, H.: Hybrid multilayered perceptron network trained by modified recursive prediction error-extreme learning machine for tuberculosis bacilli detection. In: Kuala Lumpur International Conference on Biomedical Engineering, pp. 667–673 (2011)
Osman, M.K., Mashor, M.Y., Jaafar, H.: Tuberculosis bacilli detection in Ziehl-Neelsen-stained tissue using affine moment invariants and extreme learning machine. In: IEEE International Colloquium on Signal Processing and Its Applications, pp. 232–236 (2011)
Osman, M.K., Mashor, M.Y., Jaafar, H.: Online sequential extreme learning machine for classification of Mycobacterium tuberculosis in Ziehl-Neelsen stained tissue. In: International Conference on Biomedical Engineering, pp. 139–143 (2012)
Pedraza, A., Bueno, G., Deniz, O., Cristobal, G., Blanco, S., Borrego-Ramos, M.: Automated diatom classification (Part B): a deep learning approach. Appl. Sci. 7(5), 1–25 (2017)
Priya, E., Srinivasan, S.: Automated identification of tuberculosis objects in digital images using neural network and neuro fuzzy inference systems. J. Med. Imag. Health Inf. 5(3), 506–512 (2015)
Priya, E., Srinivasan, S.: Separation of overlapping bacilli in microscopic digital TB images. Biocybern. Biomed. Eng. 35(2), 87–99 (2015)
Priya, E., Srinivasan, S.: Automated object and image level classification of TB images using support vector neural network classifier. Biocybern. Biomed. Eng. 36(4), 670–678 (2016)
Ronen, M., Guterman, H., Shabtai, Y.: Monitoring and control of pullulan production using vision sensor. J. Biochem. Biophys. Methods 51(3), 243–249 (2002)
Rulaningtyas, R., Suksmono, A.B., Mengko, T.L.R.: Automatic classification of tuberculosis bacteria using neural network. In: International Conference on Electrical Engineering and Informatics, pp. 1–4 (2011)
Schaap, A., Rohrlack, T., Bellouard, Y.: Optofluidic microdevice for algae classification: a comparison of results from discriminant analysis and neural network pattern recognition. In: Proceedings SPIE 8251, Microfluidics, BioMEMS, and Medical Microsystems X, pp. 825,104–1–825,104–10 (2012)
Schulze, K., Tillich, U.M., Dandekar, T., Frohme, M.: PlanktoVision-an automated analysis system for the identification of phytoplankton. BMC Bioinf. 14(115), 1–10 (2013)
Shabtai, Y., Ronen, M., Muknenev, I., Guterman, H.: Monitoring micorbial morphogenetic changes in a fermentation process by a self-tuning vision system (STVS). Pergamon 20(1), 321–326 (1996)
Vapnik, V.N.: Statistical Learning Theory. Wiley-Interscience, New York (1998)
Veropoulos, K., Campbell, C., Learmonth, G.: Image processing and neural computing used in the diagnosis of tuberculosis. In: IEEE Colloquium on Intelligent Methods in Healthcare and Medical Applications, pp. 8/1–8/4 (1998)
Wang, D., Wang, B., Yan, Y.: The identification of powdery mildew spores image based on the integration of intelligent spore image sequence capture device. In: International Conference on Intelligent Information Hiding and Multimedia Signal Processing, pp. 177–180 (2013)
Weller, A.F., Harris, A.J., Ware, J.A.: Two supervised neural networks for classification of sedimentary organic matter images from palynological preparations. Math. Geol. 39(7), 657–671 (2007)
Widmer, K.W., Srikumar, D., Pillai, S.D.: Use of artificial neural networks to accurately identify cryptosporidium oocyst and giardia cyst images. Appl. Environ. Microbiol. 71(1), 80–84 (2005)
Wit, P., Busscher, H.J.: Application of an artificial neural network in the enumeration of yeasts and bacteria adhering to solid substrata. J. Microbiol. Methods 32(3), 281–290 (1998)
Zeder, M., Kohler, E., Pernthaler, J.: Automated quality assessment of autonomously acquired microscopic images of fluorescently stained bacteria. Cytometry Part A 77(A), 76–85 (2010)
Acknowledgement
We thank our previous cooperators in related works: Prof. Dr.-Ing. Marcin Grzegorzek, Dr.-Ing. Kimiaki Shirahama, Dr.-Ing. Joanna Czajkowska, M.Sc. Sergey Kosov, Dr.-Ing. Fangshu Ma, Prof. Yanling Zou and Prof. Dr. Beihai Zhou. We also thank the ‘Double Top Construction’ funding supported by the Northeastern University, China.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Li, C. et al. (2019). A Brief Review for Content-Based Microorganism Image Analysis Using Classical and Deep Neural Networks. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds) Information Technology in Biomedicine. ITIB 2018. Advances in Intelligent Systems and Computing, vol 762. Springer, Cham. https://doi.org/10.1007/978-3-319-91211-0_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-91211-0_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-91210-3
Online ISBN: 978-3-319-91211-0
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)