Skip to main content

A Brief Review for Content-Based Microorganism Image Analysis Using Classical and Deep Neural Networks

  • Conference paper
  • First Online:
Information Technology in Biomedicine (ITIB 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 762))

Included in the following conference series:

Abstract

Microorganisms play very important roles in people’s daily life. To discover the information of them is a fundamental work in microbiological studies, which can assist microbiologists and related scientists to get to know more properties, habits and characteristics of these tiny but obbligato living beings. To this end, effective Content-based Microorganism Image Analysis (CBMIA) approaches using Artificial Neural Networks (ANNs) are introduced to microbiological fields from the 1990s. In order to clarify the development history and find the developing trend of ANNs in the CBMIA field, we briefly survey around 60 related works in this paper, including classical ANNs, deep ANNs and methodology analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    DGM LIB: Semantic Image Segmentation with Conditional Random Fields. 2018, Available at: http://research.project-10.de/dgm/.

References

  1. Amaral, A.L., Ginoris, Y.P., Nicolau, A., Coelho, M.A.Z., Ferreira, E.C.: Stalked protozoa identification by image analysis and multivariable statistical techniques. Anal. Bioanal. Chem. 319(4), 1321–1325 (2008)

    Article  Google Scholar 

  2. Ayas, S., Ekinci, M.: Random forest-based tuberculosis bacteria classification in images of ZN-stained sputum smear samples. SIViP 8(1), 49–61 (2014)

    Article  Google Scholar 

  3. Balfoort, H.W., Snoek, J., Smits, J.R.M., Breedveld, L.W., Hofstraat, J.W., Ringelberg, J.: Automatic identification of algae: neural network analysis of flow cytometric data. J. Plankton Res. 14(4), 575–589 (1992)

    Article  Google Scholar 

  4. Beaufort, L., Dollfus, D.: Automatic recognition of coccoliths by dynamical neural networks. Mar. Micropaleontol. 51(1–2), 57–73 (2004)

    Article  Google Scholar 

  5. Blackburn, N., Hagstrom, A., Wikner, J., Cuadros-Hansson, R., Bjornsen, P.K.: Rapid determination of bacterial abundance, biovolume, morphology, and growth by neural network-based image analysis. Appl. Environ. Microbiol. 64(9), 3246–3255 (1998)

    Google Scholar 

  6. Chang, C., Lin, C.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 3(2), 1–27 (2011)

    Article  Google Scholar 

  7. Chen, C., Li, X.: A new wastewater bacteria classification with microscopic image analysis. In: WSEAS International Conference on Computers, pp. 915–921 (2008)

    Google Scholar 

  8. Coltelli, P., Barsanti, L., Evangelista, V., Frassanito, A.M., Gualtieri, P.: Water monitoring: automated and real time identification and classification of algae using digital microscopy. Environ. Sci. Process. Impacts 16(11), 2656–2665 (2014)

    Article  Google Scholar 

  9. Coltelli, P., Barsanti, L., Evangelista, V., Frassanito, A.M., Gualtieri, P.: Reconstruction of the absorption spectrum of an object spot from the colour values of the corresponding pixel(s) in its digital image: the challenge of algal colours. J. Microsc. 264(3), 311–320 (2016)

    Article  Google Scholar 

  10. Culverhouse, P., Herry, V., Parisini, T., Williams, R., Reguera, B., Gonzalez-Gil, S., Fonda, S., Cabrini, M.: DiCANN: a machine vision solution to biological specimen categorisation. In: Proceedings of the EurOCEAN 2000 Conference, pp. 239–240 (2000)

    Google Scholar 

  11. Culverhouse, P.F., Ellis, R., Simpson, R.G., Williams, R., Pierce, R.W., Turner, J.T.: Automatic categorisation of five species of cymatocylis (protozoa, tintinnida) by artificial neural network. Mar. Ecol. Prog. Ser. 107, 273–280 (1994)

    Article  Google Scholar 

  12. Culverhouse, P.F., Simpson, R.G., Ellis, R., Lindley, J.A., Williams, R., Parsini, T., Reguera, B., Bravo, I., Zoppoli, R., Earnshaw, G., McCall, H., Smith, G.C.: Automatic classification of field-collected dinoflagellates by artificial neural network. Mar. Ecol. Prog. Ser. 139(1–3), 281–287 (1996)

    Article  Google Scholar 

  13. Dieleman, S.: Classifying plankton with deep neural networks (2015). https://benanne.github.io/2015/03/17/plankton.html

  14. Dorado, A.P.: Automatic recognition of diatoms and its applications to the study of water quality. Ph.D. Dissertation in the Universidad de Castilla-La Mancha (2016)

    Google Scholar 

  15. Embleton, K.V., Gibson, C.E., Heaney, S.I.: Automated counting of phytoplankton by pattern recognition: a comparison with a manual counting method. J. Plankton Res. 25(6), 669–681 (2003)

    Article  Google Scholar 

  16. Ferreira, T., Rasband, W.: Image user guide (2012). https://imagej.nih.gov/ij/docs/guide/user-guide-USbooklet.pdf

  17. Filho, C.F.F.C., Levy, P.C., Xavier, C.D.M., Fujimoto, L.B.M., Costa, M.G.F.: Automatic identifi cation of tuberculosis mycobacterium. Res. Biomed. Eng. 31(1), 33–43 (2015)

    Article  Google Scholar 

  18. Gerlach, S.R., Siedenberg, D., Gerlach, D., Schtigerl, K., Giuseppin, M.L.F., Hunik, J.: Influence of reactor systems on the morphology of aspergillus awamori. application of neural network and cluster analysis for characterization of fungal morphology. ProceAs Biochem. 33(6), 601–615 (1998)

    Article  Google Scholar 

  19. Ginoris, Y.P., Amaral, A.L., Nicolau, A., Ferreira, E.C., Coelho, M.A.Z.: Recognition of protozoa and metazoa using image analysis tools, discriminant analysis and neural network. In: International Conference on Chemometrics in Analytical Chemistry, p. 1 (2006)

    Google Scholar 

  20. Guo, G., Dyer, C.R.: Learning from examples in the small sample case: face expression recognition. Syst. Man Cybern. Part B: Cybern. 35(3), 477–488 (2005)

    Article  Google Scholar 

  21. Hiremath, P.S., Bannigidad, P.: Automatic classification of bacterial cells in digital microscopic images. Int. J. Eng. Technol. 2(4), 9–15 (2009)

    Google Scholar 

  22. Hiremath, P.S., Bannigidad, P.: Automatic identification and classification of bacilli bacterial cell growth phases. Int. J. Comput. Appl. 1, 48–52 (2010). Special Issue on RTIPPR

    Google Scholar 

  23. Hiremath, P.S., Bannigidad, P.: Digital image analysis of Cocci bacterial cells using active contour method. In: International Conference on Signal and Image Processing, pp. 163–168 (2010)

    Google Scholar 

  24. Hiremath, P.S., Bannigidad, P.: Digital microscopic image analysis of spiral bacterial cell groups. In: International Conference on Intelligent Systems & Data Processing, pp. 209–213 (2011)

    Google Scholar 

  25. Hiremath, P.S., Bannigidad, P.: Identification and classification of cocci bacterial cells in digital microscopic images. Int. J. Comput. Biol. Drug Des. 4(3), 262–273 (2011)

    Article  Google Scholar 

  26. Hiremath, P.S., Bannigidad, P.: Spiral bacterial cell image analysis using active contour method. Int. J. Comput. Appl. 37(8), 5–9 (2012)

    Google Scholar 

  27. Hu, Q.: Application of statistical learning theory to plankton image analysis. Ph.D. Dissertation in the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution (2006)

    Google Scholar 

  28. Hu, Q., Davis, C.: Accurate automatic quantification of taxa-specific plankton abundance using dual classification with correction. Mar. Ecol. Prog. Ser. 306, 51–61 (2006)

    Article  Google Scholar 

  29. Kay, J.W., Shinn, A.P., Sommerville, C.: Towards an automated system for the identification of notifiable pathogens: using gyrodactylus salaris as an example. Parasitol. Today 15(5), 201–206 (1999)

    Article  Google Scholar 

  30. Kiranyaz, S., Ince, T., Pulkkinen, J., Gabbouj, M., Arje, J., Karkkainen, S., Tirronen, V., Juhola, M., Turpeinen, T., Meissner, K.: Classification and retrieval on macroinvertebrate image databases. Comput. Biol. Med. 41(7), 463–472 (2011)

    Article  Google Scholar 

  31. Kosov, S., Shirahama, K., Li, C., Grzegorzek, M.: Environmental microorganism classification using conditional random fields and deep convolutional neural networks. Pattern Recogn. p (2017)

    Google Scholar 

  32. Kramer, K.A.: Identifying plankton from grayscale silhouette images. Master thesis in University of South Florida (2005)

    Google Scholar 

  33. Kruk, M., Kozera, R., Osowski, S., Trzcinski, P., Paszt, L.S., Sumorok, B., Borkowski, B.: Computerized classification system for the identification of soil microorganisms. AIP Conf. Proc. 1648(660018), 1–4 (2015)

    Google Scholar 

  34. Kruk, M., Kozera, R., Osowski, S., Trzcinski, P., Sas-Paszt, L., Sumorok, B., Borkowski, B.: Computerized classification systemfor the identification of soil microorganisms. Appl. Mathe. Inf. Sci. 10(1), 21–31 (2016)

    Article  Google Scholar 

  35. Li, C.: Content-Based Microscopic Image Analysis. Logos Verlag Berlin GmbH, Berlin (2016)

    Google Scholar 

  36. Li, C., Wang, K., Xu, N.: A survey for the applications of content-based microscopic image analysis in microorganism classification domains. Artif. Intell. Rev. p (2017)

    Google Scholar 

  37. Li, X., Chen, C.: A novel bacteria recognition method based on microscopic image analysis. New Zealand J. Agric. Res. 50(5), 697–703 (2007)

    Article  Google Scholar 

  38. Li, X., Chen, C.: A novel wastewater bacteria recognition method based on microscopic image analysis. In: WSEAS International Conference on Circuits, Systems, Electronics, Control and Signal Processing, pp. 265–271 (2008)

    Google Scholar 

  39. Li, X., Chen, C.: An improved BP neural network for wastewater bacteria recognition based on microscopic image analysis. WSEAS Trans. Comput. 8(2), 237–247 (2009)

    Google Scholar 

  40. Li, X., Chen, C., Yv, Z.: A novel bacteria classification scheme based on microscopic image analysis. In: WSEAS International Conference on Applied Computer Science, pp. 447–451 (2007)

    Google Scholar 

  41. Mosleh, M.A., Manssor, H., Malek, S., Milow, P., Salleh, A.: A preliminary study on automated freshwater algae recognition and classification system. BMC Bioinf. 13(Suppl 17), 1–13 (2012)

    Google Scholar 

  42. Nie, D., Shank, E.A., Jojic, V.: A deep framework for bacterial image segmentation and classification. In: ACM Conference on Bioinformatics, Computational Biology and Health Informatics, pp. 306–314 (2015)

    Google Scholar 

  43. Nielsen, M.A.: Neural Networks and Deep Learning. Determination Press (2015)

    Google Scholar 

  44. Orlov, N., Johnston, J., Macura, T., Shamir, L., Goldberg, I.: Computer vision for microscopy applications. In: Obinata, G., Dutta, A. (eds.) Vision Systems: Segmentation and Pattern Recognition, pp. 222–242. I-Tech, Austria (2007)

    Google Scholar 

  45. Osman, M.K., Mashor, M.Y., Jaafar, H.: Hybrid multilayered perceptron network trained by modified recursive prediction error-extreme learning machine for tuberculosis bacilli detection. In: Kuala Lumpur International Conference on Biomedical Engineering, pp. 667–673 (2011)

    Google Scholar 

  46. Osman, M.K., Mashor, M.Y., Jaafar, H.: Tuberculosis bacilli detection in Ziehl-Neelsen-stained tissue using affine moment invariants and extreme learning machine. In: IEEE International Colloquium on Signal Processing and Its Applications, pp. 232–236 (2011)

    Google Scholar 

  47. Osman, M.K., Mashor, M.Y., Jaafar, H.: Online sequential extreme learning machine for classification of Mycobacterium tuberculosis in Ziehl-Neelsen stained tissue. In: International Conference on Biomedical Engineering, pp. 139–143 (2012)

    Google Scholar 

  48. Pedraza, A., Bueno, G., Deniz, O., Cristobal, G., Blanco, S., Borrego-Ramos, M.: Automated diatom classification (Part B): a deep learning approach. Appl. Sci. 7(5), 1–25 (2017)

    Article  Google Scholar 

  49. Priya, E., Srinivasan, S.: Automated identification of tuberculosis objects in digital images using neural network and neuro fuzzy inference systems. J. Med. Imag. Health Inf. 5(3), 506–512 (2015)

    Article  Google Scholar 

  50. Priya, E., Srinivasan, S.: Separation of overlapping bacilli in microscopic digital TB images. Biocybern. Biomed. Eng. 35(2), 87–99 (2015)

    Article  Google Scholar 

  51. Priya, E., Srinivasan, S.: Automated object and image level classification of TB images using support vector neural network classifier. Biocybern. Biomed. Eng. 36(4), 670–678 (2016)

    Article  Google Scholar 

  52. Ronen, M., Guterman, H., Shabtai, Y.: Monitoring and control of pullulan production using vision sensor. J. Biochem. Biophys. Methods 51(3), 243–249 (2002)

    Article  Google Scholar 

  53. Rulaningtyas, R., Suksmono, A.B., Mengko, T.L.R.: Automatic classification of tuberculosis bacteria using neural network. In: International Conference on Electrical Engineering and Informatics, pp. 1–4 (2011)

    Google Scholar 

  54. Schaap, A., Rohrlack, T., Bellouard, Y.: Optofluidic microdevice for algae classification: a comparison of results from discriminant analysis and neural network pattern recognition. In: Proceedings SPIE 8251, Microfluidics, BioMEMS, and Medical Microsystems X, pp. 825,104–1–825,104–10 (2012)

    Google Scholar 

  55. Schulze, K., Tillich, U.M., Dandekar, T., Frohme, M.: PlanktoVision-an automated analysis system for the identification of phytoplankton. BMC Bioinf. 14(115), 1–10 (2013)

    Google Scholar 

  56. Shabtai, Y., Ronen, M., Muknenev, I., Guterman, H.: Monitoring micorbial morphogenetic changes in a fermentation process by a self-tuning vision system (STVS). Pergamon 20(1), 321–326 (1996)

    Google Scholar 

  57. Vapnik, V.N.: Statistical Learning Theory. Wiley-Interscience, New York (1998)

    MATH  Google Scholar 

  58. Veropoulos, K., Campbell, C., Learmonth, G.: Image processing and neural computing used in the diagnosis of tuberculosis. In: IEEE Colloquium on Intelligent Methods in Healthcare and Medical Applications, pp. 8/1–8/4 (1998)

    Google Scholar 

  59. Wang, D., Wang, B., Yan, Y.: The identification of powdery mildew spores image based on the integration of intelligent spore image sequence capture device. In: International Conference on Intelligent Information Hiding and Multimedia Signal Processing, pp. 177–180 (2013)

    Google Scholar 

  60. Weller, A.F., Harris, A.J., Ware, J.A.: Two supervised neural networks for classification of sedimentary organic matter images from palynological preparations. Math. Geol. 39(7), 657–671 (2007)

    Article  Google Scholar 

  61. Widmer, K.W., Srikumar, D., Pillai, S.D.: Use of artificial neural networks to accurately identify cryptosporidium oocyst and giardia cyst images. Appl. Environ. Microbiol. 71(1), 80–84 (2005)

    Article  Google Scholar 

  62. Wit, P., Busscher, H.J.: Application of an artificial neural network in the enumeration of yeasts and bacteria adhering to solid substrata. J. Microbiol. Methods 32(3), 281–290 (1998)

    Article  Google Scholar 

  63. Zeder, M., Kohler, E., Pernthaler, J.: Automated quality assessment of autonomously acquired microscopic images of fluorescently stained bacteria. Cytometry Part A 77(A), 76–85 (2010)

    Google Scholar 

Download references

Acknowledgement

We thank our previous cooperators in related works: Prof. Dr.-Ing. Marcin Grzegorzek, Dr.-Ing. Kimiaki Shirahama, Dr.-Ing. Joanna Czajkowska, M.Sc. Sergey Kosov, Dr.-Ing. Fangshu Ma, Prof. Yanling Zou and Prof. Dr. Beihai Zhou. We also thank the ‘Double Top Construction’ funding supported by the Northeastern University, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, C. et al. (2019). A Brief Review for Content-Based Microorganism Image Analysis Using Classical and Deep Neural Networks. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds) Information Technology in Biomedicine. ITIB 2018. Advances in Intelligent Systems and Computing, vol 762. Springer, Cham. https://doi.org/10.1007/978-3-319-91211-0_1

Download citation

Publish with us

Policies and ethics