Skip to main content

Kinematics, Dynamics and Control of an Upper Limb Rehabilitation Exoskeleton

  • Conference paper
  • First Online:
Multisensor Fusion and Integration in the Wake of Big Data, Deep Learning and Cyber Physical System (MFI 2017)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 501))

Included in the following conference series:

  • 1245 Accesses

Abstract

Rehabilitation exoskeleton system is mainly developed for patients who suffered from hemiplegia and other sequelae caused by stroke. The system can assist or finally replace doctors to provide continuous and effective rehabilitation treatment. The paper presents an upper-limb rehabilitation exoskeleton system with 7 degrees of freedom using the Bowden cable actuation system. And an introduction about the mechanical structure is given. The kinematics and accessible workspace of exoskeleton is analyzed via Denavit-Hartenburg (D-H) approach and Monte Carlo method. Kane method is used to analyze the dynamic character of the robot. An admittance control algorithm is proposed to provide patient-active rehabilitation training in virtual environment. A preliminary comparison experiment is implemented to verify the effectiveness of the developed system and control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Le, F., Markovsky, I., Freeman, C.T., Rogers, E.: Identification of electrically stimulated muscle models of stroke patients. Control Eng. Pract. 18(4), 396–407 (2010)

    Article  Google Scholar 

  2. Tormene, P., Giorgino, T., Quaglini, S., Stefanelli, M.: Matching incomplete time series with dynamic time warping: an algorithm and an application to post-stroke rehabilitation. Artif. Intell. Med. 45(1), 11–34 (2009)

    Article  Google Scholar 

  3. Song, A., Pan, L., Xu, G., Li, H.: Adaptive motion control of arm rehabilitation robot based on impedance identification. Robotica 33(9), 1795–1812 (2015)

    Article  Google Scholar 

  4. Giovacchini, F., et al.: A light-weight active orthosis for hip movement assistance. Robot. Auton. Syst. 73, 123–134 (2015)

    Article  Google Scholar 

  5. Zoss, A.B., Kazerooni, H., Chu, A.: Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX). IEEE/ASME Trans. Mechatron. 11(2), 128–138 (2006)

    Article  Google Scholar 

  6. Dollar, A.M., Herr, H.: Lower extremity exoskeletons and active orthoses: challenges and state-of-the-art. IEEE Trans. Robot. 24(1), 144–158 (2008)

    Article  Google Scholar 

  7. Mohammed, S., Amirat, Y.: Towards intelligent lower limb wearable robots: Challenges and perspectives - state of the art. In: 2008 IEEE International Conference on Robotics and Biomimetics, ROBIO 2008, pp. 312–317 (2008)

    Google Scholar 

  8. Nef, T., Mihelj, M., Riener, R.: ARMin: a robot for patient-cooperative arm therapy. Med. Biol. Eng. Comput. 45(9), 887–900 (2007)

    Article  Google Scholar 

  9. Wu, Q.C., Wang, X.S., Du, F., Zhang, X.: Design and control of a powered hip exoskeleton for walking assistance. Int. J. Adv. Robot. Syst. 12, 18 (2015)

    Article  Google Scholar 

  10. Zierath, J., Woernle, C.: Multibody Dynamics Computational Methods and Applications, vol. 28. Springer, Berlin (2013)

    Google Scholar 

  11. Omar, M.: Multibody dynamics formulation for modeling and simulation of roller chain using spatial operator. In: MATEC Web of Conferences, vol. 3, pp. 1–8 (2016)

    Article  Google Scholar 

  12. Schiehlen, W.: Multibody system dynamics: roots and perspectives. Multibody Syst. Dyn. 1(2), 149–188 (1997)

    Article  MathSciNet  Google Scholar 

  13. Zhou, L., Li, Y., Bai, S.: A human-centered design optimization approach for robotic exoskeletons through biomechanical simulation. Robot. Auton. Syst. 91, 337–347 (2017)

    Article  Google Scholar 

  14. Hernandez, S., Raison, M., Baron, L.: Refinement of exoskeleton design using multibody modeling: an overview, pp. 1–10 (2015)

    Google Scholar 

  15. Carignan, C.R., Naylor, M.P., Roderick, S.N.: Controlling shoulder impedance in a rehabilitation arm exoskeleton. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 2453-2458 (2008)

    Google Scholar 

  16. Jiang, X.Z., Huang, X.H., Xiong, C.H., Sun, R.L., Xiong, Y.L.: Position control of a rehabilitation robotic joint based on neuron proportion-integral and feedforward control. J. Comput. Nonlinear Dyn. 7(2), 024502 (2012)

    Article  Google Scholar 

  17. Frisoli, A., Sotgiu, E., Procopio, C., Bergamasco, M., Rossi, B., Chisari, C.: Design and implementation of a training strategy in chronic stroke with an arm robotic exoskeleton. In: Proceedings of IEEE International Conference on Rehabilitation Robotics, pp. 1–8 (2011)

    Google Scholar 

  18. Pehlivan, A.U., Losey, D.P., OrMalley, M.K.: Minimal assist-as-needed (mAAN) controller for upper limb robotic rehabilitation. IEEE Trans. Robot. 32(1), 113–124 (2016)

    Article  Google Scholar 

  19. Luna, C.O., Rahman, M.H., Saad, M., Archambault, P.S., Ferrer, S.B.: Admittance-based upper limb robotic active and active-assistive movements. Int. J. Adv. Robot. Syst. 12, 117 (2015)

    Article  Google Scholar 

  20. Duygun, E., Mallapragada, V., Sarkar, N., Taub, E.: A new control approach to robot assisted rehabilitation. In: Proceedings of IEEE International Conference on Rehabilitation Robotics, pp. 323–328 (2005)

    Google Scholar 

  21. Wu, Q.C., Wang, X.S.: Design of a gravity balanced upper limb exoskeleton with bowden cable actuators. In: Proceedings of IFAC Symposium on Mechatronic Systems, pp. 679–683 (2013)

    Google Scholar 

  22. Wu, Q.C., Wang, X.S., Chen, L., Du, F.P.: Transmission model and compensation control of double-tendon-sheath actuation system. IEEE Trans. Ind. Electron. 62(3), 1599–1609 (2015)

    Article  Google Scholar 

  23. Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control. Wiley, New York (2006)

    Google Scholar 

  24. Qingxuan, L., Gang, C.: Calculation of space robot workspace by using Monte Carlo method. Spacecr. Eng. 4(14), 79–85 (2011)

    Google Scholar 

  25. Wu, Q.C., Wang, X.S., Du, F.P.: Modeling and position control of a therapeutic exoskeleton targeting upper extremity rehabilitation. P I Mech. Eng. C- J. Mech. 231, 4360–4373 (2016)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Natural Science Foundation of China (Grant No. 51705240), the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20170783), and the State Key Laboratory of Robotics and System (HIT, Grant No. SKLRS-2018-KF-10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingcong Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, Q., Shao, Z. (2018). Kinematics, Dynamics and Control of an Upper Limb Rehabilitation Exoskeleton. In: Lee, S., Ko, H., Oh, S. (eds) Multisensor Fusion and Integration in the Wake of Big Data, Deep Learning and Cyber Physical System. MFI 2017. Lecture Notes in Electrical Engineering, vol 501. Springer, Cham. https://doi.org/10.1007/978-3-319-90509-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90509-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90508-2

  • Online ISBN: 978-3-319-90509-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics