Abstract
Designing a model for computing better matching cost is a fundamental problem in stereo method. In this paper, we propose a novel convolutional neural network (CNN) architecture, which is called MC-DCNN, for computing matching cost of two image patches. By adding dilated convolution, our model gains a larger receptive field without adding parameters and losing resolution. We also concatenate the features of last three convolutional layers as a better descriptor that contains information of different image levels. The experimental results on Middlebury datasets validate that the proposed method outperforms the baseline CNN network on stereo matching problem, and especially performs well on weakly-textured areas, which is a shortcoming of traditional methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Scharstein, D., Szeliski, R., Zabih, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. In: IEEE SMBV, pp. 131–140 (2001)
Hirschmuller, H.: Stereo processing by semiglobal matching and mutual information. IEEE Trans. PAMI 30(2), 328–341 (2008)
Woodford, O., Torr, P., Reid, I.: Global stereo reconstruction under second-order smoothness priors. IEEE Trans. PAMI 31(12), 2115–2128 (2009)
Zbontar, J., LeCun, Y.: Computing the stereo matching cost with a convolutional neural network. In: IEEE CVPR, pp. 1592–1599 (2015)
Zbontar, J., LeCun, Y.: Stereo matching by training a convolutional neural network to compare image patches. JMLR 17(1), 2287–2318 (2016)
Birchfield, S., Tomasi, C.: Depth discontinuities by pixel-to-pixel stereo. IJCV 35(3), 269–293 (1999)
Kong, D., Tao, H.: A method for learning matching errors for stereo computation. BMVC 1, 2–11 (2004)
Heo, Y.S., Lee, K.M., Lee, S.U.: Robust stereo matching using adaptive normalized cross-correlation. IEEE Trans. PAMI 33(4), 807–822 (2011)
Hirschmuller, H., Innocent, P.R., Garibaldi, J.: Real-time correlation-based stereo vision with reduced border errors. IJCV 47(1–3), 229–246 (2002)
Hirschmuller, H., Scharstein, D.: Evaluation of stereo matching costs on images with radiometric differences. IEEE Trans. PAMI 31(9), 1582–1599 (2009)
Scharstein, D., Hirschmüller, H., Kitajima, Y., Krathwohl, G., Nešić, N., Wang, X., Westling, P.: High-resolution stereo datasets with subpixel-accurate ground truth. In: Jiang, X., Hornegger, J., Koch, R. (eds.) GCPR 2014. LNCS, vol. 8753, pp. 31–42. Springer, Cham (2014). doi:10.1007/978-3-319-11752-2_3
Chen, L.C., Papandreou, G., Kokkinos, I.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. arXiv preprint arXiv:1412.7062 (2014)
Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122 (2015)
Zhang, K., Lu, J., Lafruit, G.: Cross-based local stereo matching using orthogonal integral images. IEEE Trans. CSVT 19(7), 1073–1079 (2009)
Trzcinski, T., Christoudias, M., Lepetit, V.: Learning image descriptors with boosting. IEEE Trans. PAMI 37(3), 597–610 (2013)
Simonyan, K., Vedaldi, A., Zisserman, A.: Learning local feature descriptors using convex optimisation. IEEE Trans. PAMI 36(8), 1573–1585 (2014)
Zagoruyko, S., Komodakis, N.: Learning to compare image patches via convolutional neural networks. In: IEEE CVPR, pp. 4353–4361 (2015)
Barron, J.T., Poole, B.: The fast bilateral solver. In: ECCV, pp. 617–632 (2016)
Kim, K.R., Kim, C.S.: Adaptive smoothness constraints for efficient stereo matching using texture and edge information. In: IEEE ICIP, pp. 3429–3433 (2016)
Drouyer, S., Beucher, S., Bilodeau, M., Moreaud, M.: Sparse stereo disparity map densification using hierarchical image segmentation. In: ISMM, pp. 172–184 (2017)
Luo, W., Schwing, A.G., Urtasun, R.: Efficient deep learning for stereo matching. In: IEEE CVPR, pp. 5695–5703 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Liu, X., Luo, Y., Ye, Y., Lu, J. (2017). MC-DCNN: Dilated Convolutional Neural Network for Computing Stereo Matching Cost. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10636. Springer, Cham. https://doi.org/10.1007/978-3-319-70090-8_26
Download citation
DOI: https://doi.org/10.1007/978-3-319-70090-8_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-70089-2
Online ISBN: 978-3-319-70090-8
eBook Packages: Computer ScienceComputer Science (R0)