Skip to main content

A Comparative Study of Joint-SNVs Analysis Methods and Detection of Susceptibility Genes for Gastric Cancer in Korean Population

  • Conference paper
  • First Online:
Intelligence Science and Big Data Engineering (IScIDE 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10559))

Abstract

Many joint-SNVs (single-nucleotide variants) analysis methods were proposed to tackle the ‘missing heritability’ problem, which emphasizes that the joint genetic variants can explain more heritability of traits and diseases. However, there is still lack of a systematic comparison and investigation on the relative strengths and weaknesses of these methods. In this paper, we evaluated their performance on extensive simulated data generated by varying sample size, linkage disequilibrium (LD), odds ratios (OR), and minor allele frequency (MAF), which aims to cover almost all scenarios encountered in practical applications. Results indicated that a method called Statistics-space Boundary Based Test (S-space BBT) showed stronger detection power than other methods. Results on a real dataset of gastric cancer for Korean population also validate the effectiveness of the S-space BBT method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hindorff, L.A., Sethupathy, P., Junkins, H.A., Ramos, E.M., Mehta, J.P., Collins, F.S., Manolio, T.A.: Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl. Acad. Sci. U.S.A. 106(23), 9362–9367 (2009)

    Article  Google Scholar 

  2. Schork, N.J., Murray, S.S., Frazer, K.A., Topol, E.J.: Common vs. Rare allele hypotheses for complex diseases. Curr. Opin. Genet. Dev. 19(3), 212–219 (2009)

    Article  Google Scholar 

  3. Manolio, T.A., Collins, F.S., Cox, N.J., Goldstein, D.B., Hindorff, L.A., Hunter, D.J., McCarthy, M.I., Ramos, E.M., Cardon, L.R., Chakravarti, A., Cho, J.H., et al.: Finding the missing heritability of complex diseases. Nature 461(7265), 747–753 (2009)

    Article  Google Scholar 

  4. Xu, L.: Bi-linear matrix-variate analyses, integrative hypothesis tests, and case–control studies. Appl. Inform. 2(1), 1–39 (2015)

    Article  Google Scholar 

  5. Xu, L.: A new multivariate test formulation: theory, implementation, and applications to genome-scale sequencing and expression. Appl. Inform. 3(1), 1–23 (2016)

    Article  Google Scholar 

  6. Lee, S., Wu, M.C., Lin, X.: Optimal tests for rare variant effects in sequencing association studies. Biostatistics 13(4), 762–775 (2012)

    Article  Google Scholar 

  7. Lv, J.X., Huang, H.C., Chen, R.S., Xu, L.: A comparison study on multivariate methods for joint-SNVs association analysis, pp. 1771–1776

    Google Scholar 

  8. Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A., Bender, D., Maller, J., Sklar, P., De Bakker, P.I., Daly, M.J.: Plink: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81(3), 559–575 (2007)

    Article  Google Scholar 

  9. Wu, M.C., Lee, S., Cai, T., Li, Y., Boehnke, M., Lin, X.: Rare-variant association testing for sequencing data with the sequence kernel association test. Am. J. Hum. Genet. 89(1), 82–93 (2011)

    Article  Google Scholar 

  10. Slatkin, M.: Linkage disequilibrium–understanding the evolutionary past and mapping the medical future. Nat. Rev. Genet. 9(6), 477–485 (2008)

    Article  Google Scholar 

  11. Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D.M., Forman, D., Bray, F.: Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136(5), E359–E386 (2015)

    Article  Google Scholar 

  12. Gomes, I., Collins, A., Lonjou, C., Thomas, N.S., Wilkinson, J., Watson, M., Morton, N.: Hardy-weinberg quality control. Ann. Hum. Genet. 63(Pt 6), 535–538 (1999)

    Article  Google Scholar 

  13. Sakamoto, H., Yoshimura, K., Saeki, N., Katai, H., Shimoda, T., Matsuno, Y., Saito, D., Sugimura, H., Tanioka, F., Kato, S.: Genetic variation in psca is associated with susceptibility to diffuse-type gastric cancer. Nat. Genet. 40(6), 730–740 (2008)

    Article  Google Scholar 

  14. Song, H.R., Kim, H.N., Piao, J.M., Kweon, S.S., Choi, J.S., Bae, W.K., Chung, I.J., Park, Y.K., Kim, S.H., Choi, Y.D., Shin, M.H.: Association of a common genetic variant in prostate stem-cell antigen with gastric cancer susceptibility in a korean population. Mol. Carcinog. 50(11), 871–875 (2011)

    Article  Google Scholar 

  15. Ferreira, M.A., O’Donovan, M.C., Meng, Y.A., Jones, I.R., Ruderfer, D.M., Jones, L., Fan, J., Kirov, G., Perlis, R.H., Green, E.K., Smoller, J.W., et al.: Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat. Genet. 40(9), 1056–1058 (2008)

    Article  Google Scholar 

  16. Wellcome Trust Case Control C: Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447(7145), 661–678 (2007)

    Google Scholar 

  17. Zhang J, Huang JY, Chen YN, Yuan F, Zhang H, Yan FH, Wang MJ, Wang G, Su M, Lu G, Huang Y et al: Whole genome and transcriptome sequencing of matched primary and peritoneal metastatic gastric carcinoma. Scientific reports (2015) 5(13750

    Google Scholar 

  18. Sakamoto, H., Yoshimura, K., Saeki, N., Katai, H., Shimoda, T., Matsuno, Y., Saito, D., Sugimura, H., Tanioka, F., Kato, S.: Genetic variation in psca is associated with susceptibility to diffuse-type gastric cancer. Nature genetics 40(6), 730–740 (2008)

    Article  Google Scholar 

  19. Song, H.R., Kim, H.N., Piao, J.M., Kweon, S.S., Choi, J.S., Bae, W.K., Chung, I.J., Park, Y.K., Kim, S.H., Choi, Y.D., Shin, M.H.: Association of a common genetic variant in prostate stem-cell antigen with gastric cancer susceptibility in a korean population. Molecular carcinogenesis 50(11), 871–875 (2011)

    Article  Google Scholar 

  20. Thutkawkorapin, J., Picelli, S., Kontham, V., Liu, T., Nilsson, D., Lindblom, A.: Exome sequencing in one family with gastric-and rectal cancer. BMC genetics 17(1), 1 (2016)

    Article  Google Scholar 

  21. Katoh, M.: Dysregulation of stem cell signaling network due to germline mutation, snp, helicobacter pylori infection, epigenetic change, and genetic alteration in gastric cancer. Cancer biology & therapy 6(6), 832–839 (2007)

    Article  Google Scholar 

  22. Hasegawa, S., Furukawa, Y., Li, M., Satoh, S., Kato, T., Watanabe, T., Katagiri, T., Tsunoda, T., Yamaoka, Y., Nakamura, Y.: Genome-wide analysis of gene expression in intestinal-type gastric cancers using a complementary DNA microarray representing 23,040 genes. Cancer research 62(23), 7012–7017 (2002)

    Google Scholar 

  23. Yuyama, Y., Dohi, T., Morita, H., Furukawa, K., Oshima, M.: Enhanced expression of gm2/gd2 synthase mrna in human gastrointestinal cancer. Cancer 75(6), 1273–1280 (1995)

    Article  Google Scholar 

  24. Cartularo, L., Laulicht, F., Sun, H., Kluz, T., Freedman, J.H., Costa, M.: Gene expression and pathway analysis of human hepatocellular carcinoma cells treated with cadmium. Toxicology and applied pharmacology 288(3), 399–408 (2015)

    Article  Google Scholar 

  25. Hlavata, I., Mohelnikova-Duchonova, B., Vaclavikova, R., Liska, V., Pitule, P., Novak, P., Bruha, J., Vycital, O., Holubec, L., Treska, V., Vodicka, P., et al.: The role of abc transporters in progression and clinical outcome of colorectal cancer. Mutagenesis 27(2), 187–196 (2012)

    Article  Google Scholar 

  26. Sung CO, Sohn I: The expression pattern of 19 genes predicts the histology of endometrial carcinoma. Scientific reports (2014) 4(5174

    Google Scholar 

  27. Wang, H., Liang, L., Fang, J.Y., Xu, J.: Somatic gene copy number alterations in colorectal cancer: New quest for cancer drivers and biomarkers. Oncogene 35(16), 2011–2019 (2016)

    Article  Google Scholar 

  28. Duan, S., Cermak, L., Pagan, J.K., Rossi, M., Martinengo, C., di Celle, P.F., Chapuy, B., Shipp, M., Chiarle, R., Pagano, M.: Fbxo11 targets bcl6 for degradation and is inactivated in diffuse large b-cell lymphomas. Nature 481(7379), 90–93 (2012)

    Article  Google Scholar 

  29. Chua-On, D., Proungvitaya, T., Techasen, A., Limpaiboon, T., Roytrakul, S., Wongkham, S., Wongkham, C., Somintara, O., Sungkhamanon, S., Proungvitaya, S.: High expression of apoptosis-inducing factor, mitochondrion-associated 3 (aifm3) in human cholangiocarcinoma. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 37(10), 13659–13667 (2016)

    Article  Google Scholar 

  30. Parsons, D.W., Wang, T.L., Samuels, Y., Bardelli, A., Cummins, J.M., DeLong, L., Silliman, N., Ptak, J., Szabo, S., Willson, J.K., Markowitz, S., et al.: Colorectal cancer: Mutations in a signalling pathway. Nature 436(7052), 792 (2005)

    Article  Google Scholar 

  31. Wu, X., Ye, Y., Kiemeney, L.A., Sulem, P., Rafnar, T., Matullo, G., Seminara, D., Yoshida, T., Saeki, N., Andrew, A.S., Dinney, C.P., et al.: Genetic variation in the prostate stem cell antigen gene psca confers susceptibility to urinary bladder cancer. Nature genetics 41(9), 991–995 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Zhi-Yuan chair professorship start-up grant (WF220103010) from Shanghai Jiao Tong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Xu .

Editor information

Editors and Affiliations

Appendix

Appendix

As the Table 3 showed, 6 genes belong to the group C. The somatic mutation of DCTN1 was discovered both in the primary cancer and the metastatic cancer [17]. The PSCA had been detected via the GWAS for Japanese and Korean populations [18] and conferred susceptibility to urinary bladder cancer in US and European populations [31]. While the GAL3ST1 was identified via the whole exome sequencing for people from same family [20]. The FRS2/FRS3 is related to the autophosphorylated FGFRs in the FGF signaling pathway, which is associated with the later stage for gastric cancer [21]. Hasegawa et al. found the altered expression of PPP2R1B in the lymph node metastasis for intestinal-type gastric cancer [22]. The expression of B4GALNT1 plays an crucial role in the molecular mechanisms underlying the regulation of cancer-associated GM2 expression in stomach and colon [23]. The group B consists of 7 genes. The FBXO11 induces the BCL6 degradation to suppress the tumorigenicity for the diffuse large B-cell lymphomas [28]. The MYLK2 is associated with the colorectal cancer [30]. These genes in group B might be common pathogenic genes for both gastric cancer and other kinds of cancers. As for the group A, to our limited knowledge, no literature clarified whether they are associated with cancers or not, which might play a potential role in the occurrence of gastric cancer on the genetic level.

Table 3. Literature survey for the top 20 genes

In summary, there are 65% genes associated with the gastric cancer and other kinds of cancers. It indicates that the S-space BBT is reliable in the joint-SNVs analysis.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Lv, J., Tu, S., Xu, L. (2017). A Comparative Study of Joint-SNVs Analysis Methods and Detection of Susceptibility Genes for Gastric Cancer in Korean Population. In: Sun, Y., Lu, H., Zhang, L., Yang, J., Huang, H. (eds) Intelligence Science and Big Data Engineering. IScIDE 2017. Lecture Notes in Computer Science(), vol 10559. Springer, Cham. https://doi.org/10.1007/978-3-319-67777-4_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67777-4_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67776-7

  • Online ISBN: 978-3-319-67777-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics