Skip to main content

4D Multi-atlas Label Fusion Using Longitudinal Images

  • Conference paper
  • First Online:
Patch-Based Techniques in Medical Imaging (Patch-MI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10530))

Included in the following conference series:

  • 1592 Accesses

Abstract

Longitudinal reproducibility is an essential concern in automated medical image segmentation, yet has proven to be an elusive objective as manual brain structure tracings have shown more than 10% variability. To improve reproducibility, longitudinal segmentation (4D) approaches have been investigated to reconcile temporal variations with traditional 3D approaches. In the past decade, multi-atlas label fusion has become a state-of-the-art segmentation technique for 3D image and many efforts have been made to adapt it to a 4D longitudinal fashion. However, the previous methods were either limited by using application specified energy function (e.g., surface fusion and multi model fusion) or only considered temporal smoothness on two consecutive time points (t and t + 1) under sparsity assumption. Therefore, a 4D multi-atlas label fusion theory for general label fusion purpose and simultaneously considering temporal consistency on all time points is appealing. Herein, we propose a novel longitudinal label fusion algorithm, called 4D joint label fusion (4DJLF), to incorporate the temporal consistency modeling via non-local patch-intensity covariance models. The advantages of 4DJLF include: (1) 4DJLF is under the general label fusion framework by simultaneously incorporating the spatial and temporal covariance on all longitudinal time points. (2) The proposed algorithm is a longitudinal generalization of a leading joint label fusion method (JLF) that has proven adaptable to a wide variety of applications. (3) The spatial temporal consistency of atlases is modeled in a probabilistic model inspired from both voting based and statistical fusion. The proposed approach improves the consistency of the longitudinal segmentation while retaining sensitivity compared with original JLF approach using the same set of atlases. The method is available online in open-source.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Roy, S., Carass, A., Pacheco, J., Bilgel, M., Resnick, S.M., Prince, J.L., Pham, D.L.: Temporal filtering of longitudinal brain magnetic resonance images for consistent segmentation. NeuroImage Clin. 11, 264–275 (2016)

    Article  Google Scholar 

  2. Pham, D.L.: Spatial models for fuzzy clustering. Comput. Vis. Image Underst. 84, 285–297 (2001)

    Article  MATH  Google Scholar 

  3. Iglesias, J.E., Sabuncu, M.R.: Multi-atlas segmentation of biomedical images: a survey. Med. Image Anal. 24, 205–219 (2015)

    Article  Google Scholar 

  4. Huo, Y., Asman, A.J., Plassard, A.J., Landman, B.A.: Simultaneous total intracranial volume and posterior fossa volume estimation using multi-atlas label fusion. Hum. Brain Mapp. 38, 599–616 (2017)

    Article  Google Scholar 

  5. Huo, Y., Plassard, A.J., Carass, A., Resnick, S.M., Pham, D.L., Prince, J.L., Landman, B.A.: Consistent cortical reconstruction and multi-atlas brain segmentation. NeuroImage 138, 197–210 (2016)

    Article  Google Scholar 

  6. Li, G., Wang, L., Shi, F., Lin, W., Shen, D.: Multi-atlas based simultaneous labeling of longitudinal dynamic cortical surfaces in infants. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8149, pp. 58–65. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40811-3_8

    Chapter  Google Scholar 

  7. Guo, Y., Wu, G., Yap, P.-T., Jewells, V., Lin, W., Shen, D.: Segmentation of infant hippocampus using common feature representations learned for multimodal longitudinal data. In: Navab, N., Hornegger, J., Wells, William M., Frangi, Alejandro F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 63–71. Springer, Cham (2015). doi:10.1007/978-3-319-24574-4_8

    Chapter  Google Scholar 

  8. Wang, L., Guo, Y., Cao, X., Wu, G., Shen, D.: Consistent multi-atlas hippocampus segmentation for longitudinal MR brain images with temporal sparse representation. In: Wu, G., Coupé, P., Zhan, Y., Munsell, Brent C., Rueckert, D. (eds.) Patch-MI 2016. LNCS, vol. 9993, pp. 34–42. Springer, Cham (2016). doi:10.1007/978-3-319-47118-1_5

    Chapter  Google Scholar 

  9. Ourselin, S., Roche, A., Subsol, G., Pennec, X., Ayache, N.: Reconstructing a 3D structure from serial histological sections. Image Vis. Comput. 19, 25–31 (2001)

    Article  Google Scholar 

  10. Wang, H.Z., Suh, J.W., Das, S.R., Pluta, J.B., Craige, C., Yushkevich, P.A.: Multi-atlas segmentation with joint label fusion. IEEE Trans. Pattern Anal. 35, 611–623 (2013)

    Article  Google Scholar 

  11. Resnick, S.M., Pham, D.L., Kraut, M.A., Zonderman, A.B., Davatzikos, C.: Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain. J. Neurosci.: Off. J. Soc. Neurosci. 23, 3295–3301 (2003)

    Google Scholar 

  12. Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12, 26–41 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by NSF CAREER 1452485, NIH 5R21EY024036, NIH 1R21NS064534, NIH 2R01EB006136, NIH 1R03EB012461, and supported by the Intramural Research Program, National Institute on Aging, NIH. This project was supported in part by the National Center for Research Resources, Grant UL1 RR024975-01, and is now at the National Center for Advancing Translational Sciences, Grant 2 UL1 TR000445-06. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuankai Huo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Huo, Y., Resnick, S.M., Landman, B.A. (2017). 4D Multi-atlas Label Fusion Using Longitudinal Images. In: Wu, G., Munsell, B., Zhan, Y., Bai, W., Sanroma, G., Coupé, P. (eds) Patch-Based Techniques in Medical Imaging. Patch-MI 2017. Lecture Notes in Computer Science(), vol 10530. Springer, Cham. https://doi.org/10.1007/978-3-319-67434-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67434-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67433-9

  • Online ISBN: 978-3-319-67434-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics