Abstract
Proliferation in smart grid gave rise to different Demand Side Management (DSM) techniques, designed for type of sectors i.e. domestic, trade and commercial sectors, very effective in smoothening load profile of the consumers in grid area network. To resolve energy crises in residential areas, smart homes are introduced; contains Smart Meters, allows bidirectional communication between utilities and customers. For this purpose, different heuristic techniques are approached to overcome state of the art energy crisis which provide best optimal solution. The purpose of our implementation is to reduce the total cost and Peak to Average Ratio value while keeping in mind that there is a trade-off of these with waiting time up to an acceptable limit. Our proposed scheme uses heuristic technique Harmony Search Algorithm with Fish Swarm Algorithm to achieve the defined goals. Real time prizing signal is used for bill calculation in Advanced Metering Infrastructure.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Gelazanskas, L., Gamage, K.A.: Demand side management in smart grid: a review and proposals for future direction. Sustain. Cities Soc. 11, 22–30 (2014)
Tsai, H.C., Lin, Y.H.: Modification of the fish swarm algorithm with particle swarm optimization formulation and communication behavior. Appl. Soft Comput. 11(8), 5367–5374 (2011)
Zhu, Z., Tang, J., Lambotharan, S., Chin, W.H., Fan, Z.: An integer linear programming based optimization for home demand-side management in smart grid. In: 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), pp. 1–5. IEEE, January 2012
Shakouri, H., Kazemi, A.: Multi-objective cost-load optimization for demand side management of a residential area in smart grids. Sustain. Cities Soc. 32, 171–180 (2017)
Anvari-Moghaddam, A., Monsef, H., Rahimi-Kian, A.: Optimal smart home energy management considering energy saving and a comfortable lifestyle. IEEE Trans. Smart Grid 6(1), 324–332 (2015)
Moon, S., Lee, J.W.: Multi-residential demand response scheduling with multi-class appliances in smart grid. IEEE Trans. Smart Grid (2016)
Samadi, P., Wong, V.W., Schober, R.: Load scheduling and power trading in systems with high penetration of renewable energy resources. IEEE Trans. Smart Grid 7(4), 1802–1812 (2016)
Ma, K., Yao, T., Yang, J., Guan, X.: Residential power scheduling for demand response in smart grid. Int. J. Electr. Power Energy Syst. 78, 320–325 (2016)
Huang, Y., Wang, L., Guo, W., Kang, Q., Wu, Q.: Chance constrained optimization in a home energy management system. IEEE Trans. Smart Grid (2017)
Bharathi, C., Rekha, D., Vijayakumar, V.: Genetic algorithm based demand side management for smart grid. Wireless Pers. Commun. 93(2), 481–502 (2017)
Basit, A., Sidhu, G.A.S., Mahmood, A., Gao, F.: Efficient and autonomous energy management techniques for the future smart homes. IEEE Trans. Smart Grid (2015)
Zhao, Z., Lee, W.C., Shin, Y., Song, K.B.: An optimal power scheduling method for demand response in home energy management system. IEEE Trans. Smart Grid 4(3), 1391–1400 (2013)
Javaid, N., Javaid, S., Abdul, W., Ahmed, I., Almogren, A., Alamri, A., Niaz, I.A.: A hybrid genetic wind driven heuristic optimization algorithm for demand side management in smart grid. Energies 10(3), 319 (2017)
Rahim, S., Javaid, N., Ahmad, A., Khan, S.A., Khan, Z.A., Alrajeh, N., Qasim, U.: Exploiting heuristic algorithms to efficiently utilize energy management controllers with renewable energy sources. Energy Build. 129, 452–470 (2016)
Wang, H., Wang, Z., Domingo-Ferrer, J.: Anonymous and secure aggregation scheme in fog-based public cloud computing. Future Gener. Comput. Syst. (2017)
Busom, N., Petrlic, R., SebÃl’, F., Sorge, C., Valls, M.: Efficient smart metering based on homomorphic encryption. Comput. Commun. 82, 95–101 (2016)
Jiang, R., Lu, R., Choo, K.K.R.: Achieving high performance and privacy-preserving query over encrypted multidimensional big metering data. Future Gener. Comput. Syst. (2016)
Jo, H.J., Kim, I.S., Lee, D.H.: Efficient and privacy-preserving metering protocols for smart grid systems. IEEE Trans. Smart Grid 7(3), 1732–1742 (2016)
Ni, J., Zhang, K., Lin, X., Shen, X.S.: EDAT: efficient data aggregation without TTP for privacy-assured smart metering. In: 2016 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE, May 2016
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Haider, S., Faisal, H.M., Amin, Z., Nawaz, H., Akram, K., Javaid, N. (2018). DSM Using Fish Swarm Optimization and Harmony Search Algorithm Using HEMS in Smart Grid. In: Barolli, L., Woungang, I., Hussain, O. (eds) Advances in Intelligent Networking and Collaborative Systems. INCoS 2017. Lecture Notes on Data Engineering and Communications Technologies, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-65636-6_47
Download citation
DOI: https://doi.org/10.1007/978-3-319-65636-6_47
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-65635-9
Online ISBN: 978-3-319-65636-6
eBook Packages: EngineeringEngineering (R0)