Skip to main content

Robust Object Tracking via Structure Learning and Patch Refinement in Handling Occlusion

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10464))

Included in the following conference series:

  • 5121 Accesses

Abstract

Object tracking is a challenging task especially when occlusion occurs. In this paper, we propose a robust tracking method via structure learning and patch refinement to handle occlusion problem. First, we pose the tracking task as a structured output learning problem to mitigate the gap between pattern classification and the objective of object tracking. Contrary to the random target candidates selection method, we utilize the object independent proposal strategy to generate high quality training and testing samples in structured learning. Second, we over-segment the tracked target to a set of superpixel patches, and then train a background/foreground binary classifier to remove the background patches within the tracked object rectangle area for refining the tracking precision. The objective of target refining is to mitigate tracking model degradation and enhance model robustness for adapting our tracker for long-term and accurate tracking. Experimental results conducted on publicly available tracking dataset demonstrate that the proposed tracking method achieves excellent performance in handling target occlusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ross, D.A., Lim, J., Lin, R.-S., Yang, M.-H.: Incremental learning for robust visual tracking. Int. J. Comput. Vision 77(1), 125–141 (2008)

    Article  Google Scholar 

  2. Mei, X., Ling, H.: Robust visual tracking using L1 minimization. In: IEEE International Conference on Computer Vision, pp. 1436–1443. IEEE, Kyoto (2009)

    Google Scholar 

  3. Zhong, W., Lu, H., Yang, M.: Robust object tracking via sparse collaborative appearance model. IEEE Trans. Image Process. 23(5), 2356–2368 (2004)

    Article  MathSciNet  Google Scholar 

  4. Avidan, S.: Support vector tracking. IEEE Trans. Pattern Anal. Mach. Intell. 26(8), 1064–1072 (2004)

    Article  Google Scholar 

  5. Hare, S., Golodetz, S., Saffari, A., et al.: Struck: Structured output tracking with kernels. IEEE Trans. Pattern Anal. Mach. Intell. 38(10), 2096–2109 (2016)

    Article  Google Scholar 

  6. Bolme, D.S., Beveridge, J.R., Draper, B., Lui, Y.M., et al.: Visual object tracking using adaptive correlation filters. In: IEEE International Conference on Computer Vision, pp. 2544–2550. IEEE, Istanbul (2010)

    Google Scholar 

  7. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 583–596 (2015)

    Article  Google Scholar 

  8. Jia, X., Lu, H., Yang, M.-H.: Visual tracking via adaptive structural local sparse appearance model. In: IEEE Computer vision and pattern recognition, pp. 1822–1829. IEEE, Providence (2012)

    Google Scholar 

  9. Zhong, W., Lu, H., Yang, M.: Robust object tracking via sparse collaborative appearance model. IEEE Trans. Image Process. 23(5), 2356–2368 (2014)

    Article  MathSciNet  Google Scholar 

  10. Zhou, X., Yu, H., Liu, H., Li, Y.F.: Tracking multiple video targets with an improved GM-PHD tracker. Sensors 15(12), 30240–30260 (2015)

    Article  Google Scholar 

  11. Zhou, X., Li, Y.F., He, B., Bai, T.: GM-PHD-Based multi-target visual tracking using entropy distribution and game theory. IEEE Trans. Ind. Inf. 10(2), 1064–1076 (2014)

    Article  Google Scholar 

  12. Ma, C., Huang, J.-B., Yang, X., Yang, M.-H.: Hierarchical convolutional features for visual tracking. In: IEEE International Conference on Computer Vision, pp. 3074–3082. IEEE, Boston (2015)

    Google Scholar 

  13. Wang, N., Yeung, D.-Y.: Learning a deep compact image representation for visual tracking. In: Advances in Neural Information Processing Systems, pp. 809–817. Lake Tahoe (2013)

    Google Scholar 

  14. Nam, H., Han, B.: Learning multi-domain convolutional neural networks for visual tracking. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, pp. 4293–4302. IEEE, Las Vegas (2016)

    Google Scholar 

  15. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  16. Yang, F., Lu, H., Yang, M.H.: Robust superpixel tracking. IEEE Trans. Image Process. 23(4), 1639–1651 (2014)

    Article  MathSciNet  Google Scholar 

  17. Cheng, M.-M., Zhang, Z.B., et al.: Binarized normed gradients for objectness estimation at 300fps. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3286–3293. IEEE, Columbus (2014)

    Google Scholar 

  18. Wu, Y., Lim, J., Yang, M.H.: Online object tracking: a benchmark. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2411–2418. IEEE, Portland (2013)

    Google Scholar 

  19. Qi, Y., Zhang, S., Qin, L., et al.: Hedged deep tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4303–4311. IEEE, Las Vegas (2016)

    Google Scholar 

  20. Zhang, K., Zhang, L., Yang, M.-H.: Real-time compressive tracking. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 864–877. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33712-3_62

    Chapter  Google Scholar 

  21. Babenko, B., Yang, M.H., Belongie, S.: Visual tracking with online multiple instance learning. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 983–990. IEEE, Miami (2009)

    Google Scholar 

  22. Kalal, Z., Matas, J., Mikolajczyk, K.: P-N learning: bootstrapping binary classifiers by structural constraints. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 49–56. IEEE, California (2010)

    Google Scholar 

  23. Danelljan, M., Hager, G., Shahbaz Khan, F., et al.: Learning spatially regularized correlation filters for visual tracking. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 4310–4318. IEEE, Boston (2015)

    Google Scholar 

Download references

Acknowledgment

This work is partially supported by National Natural Science Foundation (Grant No. 61403342, U1509207, 61325019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolong Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Li, J., Zhou, X., Chen, S., Chan, S., Ju, Z. (2017). Robust Object Tracking via Structure Learning and Patch Refinement in Handling Occlusion. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds) Intelligent Robotics and Applications. ICIRA 2017. Lecture Notes in Computer Science(), vol 10464. Springer, Cham. https://doi.org/10.1007/978-3-319-65298-6_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65298-6_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65297-9

  • Online ISBN: 978-3-319-65298-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics