Skip to main content

A Review of Upper and Lower Limb Rehabilitation Training Robot

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10462))

Included in the following conference series:

  • 6267 Accesses

Abstract

With the aging of society, the number of patients with limb disorders caused by stroke has increased year by year, it is necessary to introduce more advanced technology into the field of rehabilitation treatment. Rehabilitation training based on the brain plasticity has been proved by clinical medical practice as an effective treatment method, and because of the serious lack of professional rehabilitation therapists, a large number of rehabilitation training robot have been designed so far. This article analyzed and described the research status on upper and lower limbs rehabilitation training robot, and at last the paper forecasts the future development trend of rehabilitation robot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, L.: Report on the Chinese Stroke Prevention. Peking Union Medical College Press, Beijing (2015)

    Google Scholar 

  2. Lou, J., Zeng, Z.: Stroke and brain plasticity. J. Henan Univ. (Med. Sci.) 29(1), 1–4 (2010)

    Google Scholar 

  3. Yang, D., Zeng, X.: Research progress of brain plasticity for stroke. Chin. J. Cerebrovasc. Dis. 8(4), 221–224 (2011)

    MathSciNet  Google Scholar 

  4. Charles, S.K., Krebs, H.I., Volpe, B.T., et al.: Wrist rehabilitation following stroke: Initial clinical results. In: IEEE International Conference on Rehabilitation Robotics, pp. 13–16 (2005)

    Google Scholar 

  5. Krebs, H.I., Dipietro, L., Levy-Tzedek, S., et al.: A paradigm shift for rehabilitation robotics. IEEE Eng. Med. Biol. Mag. 27(4), 61–70 (2008)

    Article  Google Scholar 

  6. Lum, P.S., Burga, C.G., Shor, P.C.: Use of the MIME robotic system to retrain multi-joint reaching in post-stroke hemiparesis: why some movement patterns work better than others. in: Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 1475–1478 (2003)

    Google Scholar 

  7. Burgar, C.G., Lum, P.S., Shor, P.C., et al.: Development of robots for rehabilitation therapy: The Palo Alto VA/Stanford experience. J. Rehabil. Res. Dev. 37(6), 663–673 (2000)

    Google Scholar 

  8. Reinkensmeyer, D.J., Kahn, L.E., Averbuch, M., et al.: Understanding and treating arm movement impairment after chronic brain injury: progress with the ARM guide. J. Rehabil. Res. Dev. 37(6), 653–662 (2000)

    Google Scholar 

  9. Amirabdollahian, F., Gradwell, E., Loureiro, R., et al.: Effects of the GENTLE/S robot mediated therapy on the outcome of upper limb rehabilitation post-stroke: analysis of the battle hospital data. In: 8th International Conference on Rehabilitation Robotics, pp. 55–58 (2003)

    Google Scholar 

  10. Kemna, S., Culmer, P.R., Jackson, A.E, et al.: Developing a user interface for the iPAM stroke rehabilitation system. In: IEEE International Conference on Rehabilitation Robotics, pp. 879–884 (2009)

    Google Scholar 

  11. Cai, Z., Tong, D., Meadmore, K.L., et al.: Design & control of a 3D stroke rehabilitation platform. In: IEEE International Conference on Rehabilitation Robotics, p. 5975412 (2011)

    Google Scholar 

  12. Zhang, Y.B., Wang, Z.X., Ji, L.H., et al.: The clinical application of the upper extremity compound movements rehabilitation training robot. In: IEEE International Conference on Rehabilitation Robotics, pp. 91–94 (2005)

    Google Scholar 

  13. Xu, B.G., Peng, S., Song, A.G., et al.: Robot-aided upper-limb rehabilitation based on motor imagery EEG. Int. J. Adv. Rob. Syst. 8(4), 88–97 (2011)

    Google Scholar 

  14. Yang, Y., Wang, L., Tong, J., et al.: Arm rehabilitation robot impedance control and experimentation. In: IEEE International Conference on Robotics and Biomimetics, pp. 914–918 (2006)

    Google Scholar 

  15. Mao, K., Li, X.Y., Jiang, N.F., et al.: The design and implementation of the passive upper limb rehabilitation robot based on magnetic powder brakes. In: International Symposium on IT in Medicine and Education, pp. 341–345 (2011)

    Google Scholar 

  16. Hu, X.L., Tong, K.Y., Song, R., et al.: A comparison between electromyography-driven robot and passive motion device on wrist rehabilitation for chronic stroke. Neurorehabil. Neural Repair 23(8), 837–846 (2009)

    Article  Google Scholar 

  17. Li, J., Wang, J., Zhao, H., et al.: Critical technologies of lower limb rehabilitation training robot. Mach. Des. Manuf. 9, 220–223 (2013)

    Google Scholar 

  18. Hocoma: Lokomat-Enhanced Functional Locomotion Therapy with Augmented Performance Feedback. http://www.hocoma.com/en/products/lokomat. Accessed 5 May 2015

  19. Schück, A., Labruyère, R., Vallery, H., et al.: Feasibility and effects of patient- cooperative robot - aided gait training applied in a 4-week pilot trial. J. Neuroeng. Rehabil. 9(1), 1–14 (2012)

    Article  Google Scholar 

  20. Mirbagheri, M.M., Niu, X., Kindig, M., et al.;The effects of locomotor training with a robotic-gait orthosis (Lokomat) on neuromuscular properties in persons with chronic SCI. In: Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE, pp. 3854–3857 (2012)

    Google Scholar 

  21. Krewer, C., Rieß, K., Bergmann, J., et al.: Immediate effectiveness of single - session therapeutic interventions in pusher behaviour. Gait Posture 37(2), 246–250 (2013)

    Article  Google Scholar 

  22. Westlake, K.P., Patten, C.: Pilot study of Lokomat versus manual-assisted treadmill train-ing for locomotor recovery post-stroke. J. Neuroeng. Rehabil. 6(1), 18 (2009)

    Article  Google Scholar 

  23. Guo, S.M., Li, J.M., Wu, Q.W., et al.: Effect of gait training and assessment system of Lokomat automatic robot on walking ability of patients with incomplete spinal cord injury. Chin. J. Tissue Eng. Res. 16(13), 324–327 (2012)

    Google Scholar 

  24. Guo, S.M., Li, J.M., Wu, Q.W., et al.: Clinical application of Lokomat automatic robot gait training and assessment system. China Med. Devices 26(3), 94–96 (2011)

    Google Scholar 

  25. Ma, S.H., Liu, D., Hao, Z.W., et al.: Effect of Lokomat on lower limb motor function recovery in patients with stroke. Shandong Med. J. 52(28), 52–54 (2012)

    Google Scholar 

  26. Hocoma. Lokomat- full automatic robot gait evaluation training system. http://www.soreha.net/Product/content/id/58.html. Accessed 5 May 2015

  27. Wang, J., Yang, Z.H., Liu, H.B., et al.: Application and research progress of lower limb rehabilitation robot in patients with stroke. Chin. J. Rehabil. Med. 29(8), 784–788 (2014)

    Google Scholar 

  28. Freivogel, S., Mehrholz, J., Husak-Sotomayor, T., et al.: Gait training with the newly developed ‘LokoHelp’ - system is feasible for non-ambulatory patients after stroke, spinal cord and brain injury. A feasibility study. Brain Inj. 22(7–8), 625–632 (2008)

    Article  Google Scholar 

  29. Hesse, S., Uhlenbrock, D., Werner, C., et al.: A mechanized gait trainer for restoring gait in nonambulatory subjects. Arch. Phys. Med. Rehabil. 81(9), 1158–1161 (2000)

    Article  Google Scholar 

  30. Mantone, J.: Getting a leg up? Rehab patients get an assist from devices such as HeathSouth’s AutoAmbulator, but the robots’ clinical benefits are still in doubt. Mod. Healthc. 36(7), 58–60 (2006)

    Google Scholar 

  31. Schmidt, H., Hesse, S., Bernhardt, R., et al.: HapticWalker-a novel haptic foot device. ACM Trans. Appl. Percept. 2(2), 166–180 (2005)

    Article  Google Scholar 

  32. Schmidt, H., Sorowka, D., Hesse, S., et al.: Development of a robotic walking simulator for gait rehabilitation. Biomedizinische Technik Biomed. Eng. 48(10), 281–286 (2003)

    Article  Google Scholar 

  33. Medical, P.: Robots help to heal: G-EO-System. http://www.medicalpark.de/en/main/g-eo-system.htm. Accessed 5 Jun 2015

  34. Schmidt, H., Krger, J., Hesse, S.: HapticWalker-haptic foot device for gait rehabilitation. In: Grunwald, M. (ed.) Human Haptic Perception: Basics and Applications. Birkhäuser Basel, Basel (2008)

    Google Scholar 

  35. Hesse, S., Werner, C.: Connecting research to the needs of patients and clinicians. Brain Res. Bull. 78(1), 26–34 (2008)

    Article  Google Scholar 

  36. Zhang, J.J., Hu, X.F., Xu, X.L.: Research progress of lower limb rehabilitation training robot. Chin. J. Rehabil. Theory Pract. 18(8), 728–730 (2012)

    Google Scholar 

  37. Zhang, X.C.: Research on Key Technologies of Lower Limb Rehabilitation Training Robot. Harbin Engineering University, Harbin (2009)

    Google Scholar 

  38. Hesse, S., Uhlenbrock, D.: A mechanized gait trainer for restoration of gait. J. Rehabil. Res. Dev. 37(6), 701–708 (2000)

    Google Scholar 

  39. Hesse, S., Uhlenbrock, D.: An electromechanical gait trainer for restoration of gait in hemiparetic stroke patients: preliminary results. Neurorehabil. Neural Repair 15(1), 39–50 (2001)

    Article  Google Scholar 

  40. Liu, J.K., Sun, N., Huang, M.F.: Design of a gait mechanism of a lower limbs rehabilitative robot. Mach. Des. Res. 22(5), 59–62 (2006)

    Google Scholar 

  41. Luo, H.M., Sun, L.B.: Clinical observation of rehabilitation training with low frequency electric stimulation on patients with stroke. Chin. J. Gerontol. 9(29), 2390–2391 (2009)

    Google Scholar 

  42. Ferris, D.P., Lewis, C.L.: Robotic lower limb exoskeletons using proportional myoelectric control. In: Engineering in Medicine and Biology Society, Annual International Conference of the IEEE, pp. 2119–2124 (2009)

    Google Scholar 

  43. Alter, G.: A Revolution in Sports Rehabilitation and Athlete Training [EB/OL]. http://www.alterg.com/products/antigravitytreadmills/m320-320/athletic-train-er#content. Accessed 5 Dec 2010

  44. Zhao, J., Zou, R.L., Xu, X., et al.: Design and analysis of body weight support based treadmill for lower limb rehabilitation training. Shanghai Biomed. Eng. 35(4), 187–190 (2014)

    Google Scholar 

  45. Metrailler, P., Blanchard, V., Perrin, I., et al.: Improvement of rehabilitation possibilities with the MotionMaker TM. In: The First IEEE/RAS - EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 359–364 (2006)

    Google Scholar 

  46. Reynard, F., Gerber, F., Favre, C., et al.: Movement analysis with a new robotic device-the MotionMaker: a case report. Gait Posture 30(2), S149–S150 (2009)

    Google Scholar 

  47. Shi, X.H., Wang, H.B., Sun, L., et al.: Design and dynamic analysis of an exo-skeletal lower limbs rehabilitation robot. J. Mech. Eng. 50(3), 41–48 (2014)

    Article  Google Scholar 

  48. Akdoğan, E., Adli, M.A.: The design and control of a therapeutic exercise robot for lower limb rehabilitation: Physiotherabot. Mechatronics 21(3), 509–522 (2011)

    Article  Google Scholar 

  49. Cui, B.Y., Liang, X., Li, Z.X., et al.: Design and simulation of 2-URS&UPS lower limb rehabilitation robot. J. Mech. Transm. 38(8), 96–99 (2014)

    Google Scholar 

  50. Xu, X.L., Zou, R.L., Lu, R.R., et al.: A design of body weight loss multi-function system in patients with hemiplegia rehabilitation training and assessment. Chin. J. Biomed. Eng. 29(6), 882–888 (2010)

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants of National Natural Science Foundation of China (Grant Nos. 51575407, 51575338, 51575412) and the UK Engineering and Physical Science Research Council (Grant No. EP/G041377/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenlong Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Hu, W. et al. (2017). A Review of Upper and Lower Limb Rehabilitation Training Robot. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds) Intelligent Robotics and Applications. ICIRA 2017. Lecture Notes in Computer Science(), vol 10462. Springer, Cham. https://doi.org/10.1007/978-3-319-65289-4_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65289-4_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65288-7

  • Online ISBN: 978-3-319-65289-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics