Skip to main content

A Genetic Algorithm for Discovering Linguistic Communities in Spatiosocial Tensors with an Application to Trilingual Luxemburg

  • Conference paper
  • First Online:
Engineering Applications of Neural Networks (EANN 2017)

Abstract

Multimodal social networks are omnipresent in Web 2.0 with virtually every human communication action taking place there. Nonetheless, language remains by far the main premise such communicative acts unfold upon. Thus, it is statutory to discover language communities especially in social data stemming from historically multilingual countries such as Luxemburg. An adjacency tensor is especially suitable for representing such spatiosocial data. However, because of its potentially large size, heuristics should be developed for locating community structure efficiently. Linguistic structure discovery has a plethora of applications including digital marketing and online political campaigns, especially in case of prolonged and intense cross-linguistic contact. This conference paper presents TENSOR-G, a flexible genetic algorithm for approximate tensor clustering along with two alternative fitness functions derived from language variation or diffusion properties. The Kruskal tensor decomposition serves as a benchmark and the results obtained from a set of trilingual Luxemburgian tweets are analyzed with linguistic criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    www.gadm.org.

  2. 2.

    www.tweepy.org.

References

  1. Androutsopoulos, J.: Language change and digital media: a review of conceptions and evidence. In: Standard Languages and Language Standards in a Changing Europe (2011)

    Google Scholar 

  2. Backstrom, L., Sun, E., Marlow, C.: Find me if you can: improving geographical prediction with social and spatial proximity. In: Proceedings of the 19th International Conference on World Wide Web, pp. 61–70. ACM (2010)

    Google Scholar 

  3. Bader, B.W., Kolda, T.G.: Efficient MATLAB computations with sparse and factored tensors. SIAM J. Sci. Comput. 30(1), 205–231 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bader, B.W., Kolda, T.G., et al.: MATLAB tensor toolbox version 2.5 (2012)

    Google Scholar 

  5. Booker, L.B., Goldberg, D.E., Holland, J.H.: Classifier systems and genetic algorithms. Artif. Intell. 40(1–3), 235–282 (1989)

    Article  Google Scholar 

  6. Cardoso, J.F.: Eigen-structure of the fourth-order cumulant tensor with application to the blind source separation problem. In: ICASSP-90, pp. 2655–2658. IEEE (1990)

    Google Scholar 

  7. Croft, W.: Mixed languages and acts of identity: an evolutionary approach. Mixed Lang. Debate: Theoret. Empirical Adv. 145, 41 (2003)

    Google Scholar 

  8. Darwin, C.: On the origin of species by means of natural selection. John Murray, November 1859

    Google Scholar 

  9. Dawkins, R.: The Selfish Gene, 30th edn. Oxford University Press, Oxford (2006)

    Google Scholar 

  10. De Jong, K.: Learning with genetic algorithms: an overview. Mach. Learn. 3(2), 121–138 (1988)

    Google Scholar 

  11. De Lathauwer, L., Vandewalle, J.: Dimensionality reduction in higher-order signal processing and rank-\((r_1, r_2, \ldots, r_n)\) reduction in multilinear algebra. LAA 391, 31–55 (2004)

    MathSciNet  MATH  Google Scholar 

  12. Dixon, R.M.: The Rise and Fall of Languages. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  13. Donoso, G., Sánchez, D.: Dialectometric analysis of language variation in Twitter. arXiv preprint arXiv:1702.06777 (2017)

  14. Drakopoulos, G.: Tensor fusion of social structural and functional analytics over Neo4j. In: Proceedings of the 6th International Conference of Information, Intelligence, Systems, and Applications, IISA 2016. IEEE, July 2016

    Google Scholar 

  15. Drakopoulos, G., Kanavos, A.: Tensor-based document retrieval over Neo4j with an application to PubMed mining. In: Proceedings of the 6th International Conference of Information, Intelligence, Systems, and Applications, IISA 2016. IEEE, July 2016

    Google Scholar 

  16. Drakopoulos, G., Kanavos, A., Karydis, I., Sioutas, S., Vrahatis, A.G.: Tensor-based semantically-enhanced PubMed retrieval. Computation, May 2017. Accepted

    Google Scholar 

  17. Drakopoulos, G., Megalooikonomou, V.: An adaptive higher order scheduling policy with an application to biosignal processing. In: SSCI 2016. IEEE, December 2016

    Google Scholar 

  18. Dunlavy, D.M., Kolda, T.G., Acar, E.: Temporal link prediction using matrix and tensor factorizations. TKDD 5(2), 10 (2011)

    Article  Google Scholar 

  19. Eisenstein, J.: Sociolinguistic variation in online social media. In: 2015 AAAS Annual Meeting (2015)

    Google Scholar 

  20. Eisenstein, J., O’Connor, B., Smith, N.A., Xing, E.P.: Diffusion of lexical change in social media. PLoS One 9(11) (2014)

    Google Scholar 

  21. Eleta, I., Golbeck, J.: Bridging languages in social networks: how multilingual users of Twitter connect language communities? Proc. Am. Soc. Inf. Sci. Technol. 49(1), 1–4 (2012)

    Article  Google Scholar 

  22. Ge, X., Cheng, H., Guizani, M., Han, T.: 5G wireless backhaul networks: challenges and research advances. IEEE Netw. 28(6), 6–11 (2014)

    Article  Google Scholar 

  23. Goel, R., Soni, S., Goyal, N., Paparrizos, J., Wallach, H., Diaz, F., Eisenstein, J.: The social dynamics of language change in online networks. In: Spiro, E., Ahn, Y.-Y. (eds.) SocInfo 2016. LNCS, vol. 10046, pp. 41–57. Springer, Cham (2016). doi:10.1007/978-3-319-47880-7_3

    Chapter  Google Scholar 

  24. Goldberg, D.E., Holland, J.H.: Genetic algorithms and machine learning. Mach. Learn. 3(2), 95–99 (1988)

    Article  Google Scholar 

  25. Hale, M.: Historical Linguistics: Theory and Method. Wiley-Blackwell, Hoboken (2007)

    Google Scholar 

  26. Hale, S.A.: Global connectivity and multilinguals in the Twitter network. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 833–842. ACM (2014)

    Google Scholar 

  27. Hong, L., Convertino, G., Chi, E.H.: Language matters in Twitter: a large scale study. In: ICWSM (2011)

    Google Scholar 

  28. Kershaw, D., Rowe, M., Noulas, A., Stacey, P.: Birds of a feather talk together: user influence on language adoption. In: Proceedings of the 50th Hawaii International Conference on System Sciences (2017)

    Google Scholar 

  29. Kershaw, D., Rowe, M., Stacey, P.: Language innovation and change in on-line social networks. In: Proceedings of the 26th ACM Conference on Hypertext and Social Media, pp. 311–314. ACM (2015)

    Google Scholar 

  30. Kirk, N.A., Mees, B.: Stalin, Marr and the struggle for a Soviet linguistics. Verbatim 31(3) (2006)

    Google Scholar 

  31. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kontopoulos, S., Drakopoulos, G.: A space efficient scheme for graph representation. In: Proceedings of the 26th International Conference on Tools with Artificial Intelligence, ICTAI 2014, pp. 299–303. IEEE, November 2014

    Google Scholar 

  33. Labov, W.: Principles of linguistic change vol. 2: social factors. Lang. Soc. 29 (2001)

    Google Scholar 

  34. Labov, W.: Transmission and diffusion. Language 83(2), 344–387 (2007)

    Article  Google Scholar 

  35. Matras, Y.: Languages in contact in a world marked by change and mobility. Revue française de linguistique appliquée 18(2), 7–13 (2013)

    Google Scholar 

  36. Matsumoto, K.: The role of social networks in the post-colonial multilingual island of Palau: mechanisms of language maintenance and shift. Multilingua-J. Cross-Cultural Interlang. Commun. 29(2), 133–165 (2010)

    Article  MathSciNet  Google Scholar 

  37. Maybaum, R.: Language change as a social process: diffusion patterns of lexical innovations in Twitter. In: Annual Meeting of the Berkeley Linguistics Society, pp. 152–166 (2013)

    Google Scholar 

  38. Michael, L., Bowern, C., Evans, B.: Social dimensions of language change. In: Bowern, C., Evans, B. (eds.) Routledge Handbook of Historical Linguistics, pp. 484–502. Routledge (2014)

    Google Scholar 

  39. Milroy, J., Milroy, L.: Linguistic change, social network and speaker innovation. J. Linguist. 21(02), 339–384 (1985)

    Article  Google Scholar 

  40. Milroy, L.: Language and Social Networks, 2nd edn. Blackwell, Oxford (1980)

    Google Scholar 

  41. Nevalainen, T.: Social networks and language change in Tudor and Stuart London-only connect? English Lang. Linguist. 19(2), 269–292 (2015)

    Article  Google Scholar 

  42. Nion, D., Sidiropoulos, N.D.: Tensor algebra and multidimensional harmonic retrieval in signal processing for MIMO radar. IEEE Trans. Sig. Process. 58(11), 5693–5705 (2010)

    Article  MathSciNet  Google Scholar 

  43. Pakendorf, B.: Historical linguistics and molecular anthropology. In: Bowern, C., Evans, B. (eds.) Routledge Handbook of Historical Linguistics. Routledge (2014)

    Google Scholar 

  44. Papalexakis, E., Doğruöz, A.S.: Understanding multilingual social networks in online immigrant communities. In: 24th WWW, pp. 865–870. ACM (2015)

    Google Scholar 

  45. Stalin, J.V.: Marxism and problems of linguistics. In: Pravda, May 1950

    Google Scholar 

  46. Tagkalakis, F., Papagiannaki, A., Drakopoulos, G., Megalooikonomou, V.: Augmenting fMRI-generated brain connectivity with temporal information. In: Proceedings of the 6th International Conference of Information, Intelligence, Systems, and Applications, IISA 2016. IEEE, July 2016

    Google Scholar 

  47. Trudgill, P.: Social structure, language contact and language change. In: The SAGE Handbook of Sociolinguistics, pp. 236–249 (2011)

    Google Scholar 

  48. Weinreich, U., Labov, W., Herzog, M.I.: Empirical foundations for a theory of language change. University of Texas Press, Austin (1968)

    Google Scholar 

  49. Westin, C.F., Maier, S.E., Mamata, H., Nabavi, A., Jolesz, F.A., Kikinis, R.: Processing and visualization for diffusion tensor MRI. Med. Image Anal. 6(2), 93–108 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

This conference paper has been developed within the framework of the project “Strengthening the Research Activities of the Directorate of the Greek School Network and Network Technologies”, financed by the own resources of the Computer Technology Institute and Press “Diophantos” (project code 0822/001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Drakopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Drakopoulos, G., Stathopoulou, F., Tzimas, G., Paraskevas, M., Mylonas, P., Sioutas, S. (2017). A Genetic Algorithm for Discovering Linguistic Communities in Spatiosocial Tensors with an Application to Trilingual Luxemburg. In: Boracchi, G., Iliadis, L., Jayne, C., Likas, A. (eds) Engineering Applications of Neural Networks. EANN 2017. Communications in Computer and Information Science, vol 744. Springer, Cham. https://doi.org/10.1007/978-3-319-65172-9_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65172-9_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65171-2

  • Online ISBN: 978-3-319-65172-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics