Abstract
For Smart Environments used for elder care, learning the inhabitant’s behavior patterns is fundamental to detect changes since these can signal health deterioration. A precise model needs to consider variations implied by the fact that human behavior has an stochastic nature and is affected by context conditions. In this paper, we model behavior patterns as usual activity start times. We introduce a Frequent Pattern Mining algorithm to estimate probable start times and their variations due to context conditions using only one single scan of the activity data stream. Experimentation using the Aruba CASAS and the ContextAct@A4H datasets and comparison with a Gaussian Mixture Model show our proposition provides adequate results for smart home environments domains with a lower computational time complexity. This allows the evaluation of behavior variations at different context dimensions and varied granularity levels for each of them.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Chen, L., Hoey, J., Nugent, C.D., Cook, D.J., Yu, Z.: Sensor-based activity recognition. IEEE Trans. Syst. Man Cybern. Part C 42(6), 790–808 (2012)
Cook, D., Crandall, A., Thomas, B., Krishnan, N.: CASAS: a smart home in a box. IEEE Comput. 46(7), 62–69 (2013)
Dawadi, P.N., Cook, D.J., Schmitter-Edgecombe, M.: Modeling patterns of activities using activity curves. Pervasive Mob. Comput. 28, 51–68 (2015)
Rodríguez, N.D., Cuéllar, M., Lilius, J., et al.: A survey on ontologies for human behavior recognition. ACM Comput. Surv. 46(4), 43:1–43:33 (2014)
Forkan, A., et al.: A context-aware approach for long-term behavioural change detection and abnormality prediction in AAL. Pattern Recognit. 48(3), 628–641 (2015)
Jakkula, V.R., Crandall, A.S., Cook, D.J.: Enhancing anomaly detection using temporal pattern discovery. In: Kameas, A., Callagan, V., Hagras, H., Weber, M., Minker, W. (eds.) Advanced Intelligent Environments, pp. 175–194. Springer, Heidelberg (2009). doi:10.1007/978-0-387-76485-6_8
Lago, P., Lang, F., Roncancio, C., Jiménez-Guarín, C., Mateescu, R., Bonnefond, N.: The ContextAct@A4H real-life dataset of daily-living activities. In: Brézillon, P., Turner, R., Penco, C. (eds.) CONTEXT 2017. LNCS, vol. 10257, pp. 175–188. Springer, Cham (2017). doi:10.1007/978-3-319-57837-8_14
Lago, P., Jiménez-Guarín, C., Roncancio, C.: A case study on the analysis of behavior patterns and pattern changes in smart environments. In: Pecchia, L., Chen, L.L., Nugent, C., Bravo, J. (eds.) IWAAL 2014. LNCS, vol. 8868, pp. 296–303. Springer, Cham (2014). doi:10.1007/978-3-319-13105-4_43
Monekosso, D.N., Remagnino, P.: Behavior analysis for assisted living. IEEE Trans. Autom. Sci. Eng. 7(4), 879–886 (2010)
Moshtaghi, M., Zukerman, I., Russell, R.A.: Statistical models for unobtrusively detecting abnormal periods of inactivity in older adults. User Model. User-Adap. 25(3), 231–265 (2015)
Nait Aicha, A., Englebienne, G., Kröse, B.: Unsupervised visit detection in smart homes. Pervasive Mob. Comput. 34, 157–167 (2016)
Rabatel, J., Bringay, S., Poncelet, P.: Contextual sequential pattern mining. In: 2010 IEEE ICDM Workshops, pp. 981–988 (2010)
Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)
Soulas, J., Lenca, P., Thépaut, A.: Unsupervised discovery of activities of daily living characterized by their periodicity and variability. Eng. Appl. Artif. Intell. 45, 90–102 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Lago, P., Roncancio, C., Jiménez-Guarín, C., Labbé, C. (2017). Representing and Learning Human Behavior Patterns with Contextual Variability. In: Benslimane, D., Damiani, E., Grosky, W., Hameurlain, A., Sheth, A., Wagner, R. (eds) Database and Expert Systems Applications. DEXA 2017. Lecture Notes in Computer Science(), vol 10438. Springer, Cham. https://doi.org/10.1007/978-3-319-64468-4_23
Download citation
DOI: https://doi.org/10.1007/978-3-319-64468-4_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-64467-7
Online ISBN: 978-3-319-64468-4
eBook Packages: Computer ScienceComputer Science (R0)