Skip to main content

Representing and Learning Human Behavior Patterns with Contextual Variability

  • Conference paper
  • First Online:
Database and Expert Systems Applications (DEXA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10438))

Included in the following conference series:

Abstract

For Smart Environments used for elder care, learning the inhabitant’s behavior patterns is fundamental to detect changes since these can signal health deterioration. A precise model needs to consider variations implied by the fact that human behavior has an stochastic nature and is affected by context conditions. In this paper, we model behavior patterns as usual activity start times. We introduce a Frequent Pattern Mining algorithm to estimate probable start times and their variations due to context conditions using only one single scan of the activity data stream. Experimentation using the Aruba CASAS and the ContextAct@A4H datasets and comparison with a Gaussian Mixture Model show our proposition provides adequate results for smart home environments domains with a lower computational time complexity. This allows the evaluation of behavior variations at different context dimensions and varied granularity levels for each of them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://scikit-learn.org/.

References

  1. Chen, L., Hoey, J., Nugent, C.D., Cook, D.J., Yu, Z.: Sensor-based activity recognition. IEEE Trans. Syst. Man Cybern. Part C 42(6), 790–808 (2012)

    Article  Google Scholar 

  2. Cook, D., Crandall, A., Thomas, B., Krishnan, N.: CASAS: a smart home in a box. IEEE Comput. 46(7), 62–69 (2013)

    Article  Google Scholar 

  3. Dawadi, P.N., Cook, D.J., Schmitter-Edgecombe, M.: Modeling patterns of activities using activity curves. Pervasive Mob. Comput. 28, 51–68 (2015)

    Article  Google Scholar 

  4. Rodríguez, N.D., Cuéllar, M., Lilius, J., et al.: A survey on ontologies for human behavior recognition. ACM Comput. Surv. 46(4), 43:1–43:33 (2014)

    Article  Google Scholar 

  5. Forkan, A., et al.: A context-aware approach for long-term behavioural change detection and abnormality prediction in AAL. Pattern Recognit. 48(3), 628–641 (2015)

    Article  Google Scholar 

  6. Jakkula, V.R., Crandall, A.S., Cook, D.J.: Enhancing anomaly detection using temporal pattern discovery. In: Kameas, A., Callagan, V., Hagras, H., Weber, M., Minker, W. (eds.) Advanced Intelligent Environments, pp. 175–194. Springer, Heidelberg (2009). doi:10.1007/978-0-387-76485-6_8

    Chapter  Google Scholar 

  7. Lago, P., Lang, F., Roncancio, C., Jiménez-Guarín, C., Mateescu, R., Bonnefond, N.: The ContextAct@A4H real-life dataset of daily-living activities. In: Brézillon, P., Turner, R., Penco, C. (eds.) CONTEXT 2017. LNCS, vol. 10257, pp. 175–188. Springer, Cham (2017). doi:10.1007/978-3-319-57837-8_14

    Chapter  Google Scholar 

  8. Lago, P., Jiménez-Guarín, C., Roncancio, C.: A case study on the analysis of behavior patterns and pattern changes in smart environments. In: Pecchia, L., Chen, L.L., Nugent, C., Bravo, J. (eds.) IWAAL 2014. LNCS, vol. 8868, pp. 296–303. Springer, Cham (2014). doi:10.1007/978-3-319-13105-4_43

    Google Scholar 

  9. Monekosso, D.N., Remagnino, P.: Behavior analysis for assisted living. IEEE Trans. Autom. Sci. Eng. 7(4), 879–886 (2010)

    Article  Google Scholar 

  10. Moshtaghi, M., Zukerman, I., Russell, R.A.: Statistical models for unobtrusively detecting abnormal periods of inactivity in older adults. User Model. User-Adap. 25(3), 231–265 (2015)

    Article  Google Scholar 

  11. Nait Aicha, A., Englebienne, G., Kröse, B.: Unsupervised visit detection in smart homes. Pervasive Mob. Comput. 34, 157–167 (2016)

    Article  Google Scholar 

  12. Rabatel, J., Bringay, S., Poncelet, P.: Contextual sequential pattern mining. In: 2010 IEEE ICDM Workshops, pp. 981–988 (2010)

    Google Scholar 

  13. Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  14. Soulas, J., Lenca, P., Thépaut, A.: Unsupervised discovery of activities of daily living characterized by their periodicity and variability. Eng. Appl. Artif. Intell. 45, 90–102 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Lago .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Lago, P., Roncancio, C., Jiménez-Guarín, C., Labbé, C. (2017). Representing and Learning Human Behavior Patterns with Contextual Variability. In: Benslimane, D., Damiani, E., Grosky, W., Hameurlain, A., Sheth, A., Wagner, R. (eds) Database and Expert Systems Applications. DEXA 2017. Lecture Notes in Computer Science(), vol 10438. Springer, Cham. https://doi.org/10.1007/978-3-319-64468-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64468-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64467-7

  • Online ISBN: 978-3-319-64468-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics