Skip to main content

Numerical Eligibility Criteria in Clinical Protocols: Annotation, Automatic Detection and Interpretation

  • Conference paper
  • First Online:
Artificial Intelligence in Medicine (AIME 2017)

Abstract

Clinical trials are fundamental for evaluating therapies and diagnosis techniques. Yet, recruitment of patients remains a real challenge. Eligibility criteria are related to terms but also to patient laboratory results usually expressed with numerical values. Both types of information are important for patient selection. We propose to address the processing of numerical values. A set of sentences extracted from clinical trials are manually annotated by four annotators. Four categories are distinguished: C (concept), V (numerical value), U (unit), O (out position). According to the pairs of annotators, the inter-annotator agreement on the whole annotation sequence CVU goes up to 0.78 and 0.83. Then, an automatic method using CFRs is exploited for creating a supervised model for the recognition of these categories. The obtained F-measure is 0.60 for C, 0.82 for V, and 0.76 for U.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Artstein, R., Poesio, M.: Inter-coder agreement for computational linguistics. Comput. Linguist. 34(4), 555–596 (2008)

    Article  Google Scholar 

  2. Bigeard, E., Jouhet, V., Mougin, F., Thiessard, F., Grabar, N.: Automatic extraction of numerical values from unstructured data in EHRs. In: MIE (Medical Informatics in Europe) 2015, Madrid, Spain (2015)

    Google Scholar 

  3. Campillo-Gimenez, B., Buscail, C., Zekri, O., Laguerre, B., Le Prisé, E., De Crevoisier, R., Cuggia, M.: Improving the pre-screening of eligible patients in order to increase enrollment in cancer clinical trials. Trials 16(1), 1–15 (2015)

    Article  Google Scholar 

  4. Center Watch: State of the clinical trials industry: a sourcebook of charts and statistics. Technical report, Center Watch (2013)

    Google Scholar 

  5. Davidov, D., Rappaport, A.: Extraction and approximation of numerical attributes from the web. In: 48th Annual Meeting of the Association for Computational Linguistics, pp. 1308–1317 (2010)

    Google Scholar 

  6. Fletcher, B., Gheorghe, A., Moore, D., Wilson, S., Damery, S.: Improving the recruitment activity of clinicians in randomised controlled trials: a systematic review. BMJ Open 2(1), 1–14 (2012)

    Article  Google Scholar 

  7. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: International Conference on Machine Learning (ICML) (2001)

    Google Scholar 

  8. Lavergne, T., Cappé, O., Yvon, F.: Practical very large scale CRFs. In: Proceedings the 48th Annual Meeting of the Association for Computational Linguistics (ACL), pp. 504–513. Association for Computational Linguistics, July 2010. http://www.aclweb.org/anthology/P10-1052

  9. Madaan, A., Mitta, A., Mausam, Ramakrishnan, G., Sarawagi, S.: Numerical relation extraction with minimal supervision. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)

    Google Scholar 

  10. Nath, C., Albaghdadi, M., Jonnalagadda, S.: A natural language processing tool for large-scale data extraction from echocardiography reports. PLoS One 11(4), 153749–153764 (2016)

    Article  Google Scholar 

  11. Olasov, B., Sim, I.: Ruleed, a web-based semantic network interface for constructing and revising computable eligibility rules. In: AMIA Symposium, p. 1051 (2006)

    Google Scholar 

  12. Pranjal, A., Delip, R., Balaraman, R.: Part of speech tagging and chunking with HMM and CRF. In: Proceedings of NLP Association of India (NLPAI) Machine Learning Contest (2006)

    Google Scholar 

  13. Sarath, P.R., Mandhan, S., Niwa, Y.: Numerical atrribute extraction from Clinical Texts. CoRR 1602.00269 (2016). http://arxiv.org/abs/1602.00269

  14. Raymond, C., Fayolle, J.: Reconnaissance robuste d’entités nommées sur de la parole transcrite automatiquement. In: Actes de la conférence Traitement Automatique des Langues Naturelles. Montréal, Canada (2010)

    Google Scholar 

  15. Schmid, H.: Probabilistic part-of-speech tagging using decision trees. In: Proceedings of International Conference on New Methods in Language Processing, pp. 44–49 (1994)

    Google Scholar 

  16. Sebastiani, F.: Machine learning in automated text categorization. ACM Comput. Surv. 34(1), 1–47 (2002)

    Article  MathSciNet  Google Scholar 

  17. Shivade, C., Raghavan, P., Fosler-Lussier, E., Embi, P.J., Elhadad, N., Johnson, S.B., Lai, A.M.: A review of approaches to identifying patient phenotype cohorts using electronic health records. J. Am. Med. Inform. Assoc. 21(2), 221–230 (2014)

    Article  Google Scholar 

  18. Wang, T., Li, J., Diao, Q., Hu, W., Zhang, Y., Dulong, C.: Semantic event detection using conditional random fields. In: IEEE Conference on Computer Vision and Pattern Recognition Workshop (CVPRW 2006), p. 109 (2006)

    Google Scholar 

Download references

Acknowledgements

This work was partly funded by CNRS-CONFAP project FIGTEM for Franco-Brazilian collaborations and a French government support granted to the CominLabs LabEx managed by the ANR in Investing for the Future program under reference ANR-10-LABX-07-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Claveau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Claveau, V., Silva Oliveira, L.E., Bouzillé, G., Cuggia, M., Cabral Moro, C.M., Grabar, N. (2017). Numerical Eligibility Criteria in Clinical Protocols: Annotation, Automatic Detection and Interpretation. In: ten Teije, A., Popow, C., Holmes, J., Sacchi, L. (eds) Artificial Intelligence in Medicine. AIME 2017. Lecture Notes in Computer Science(), vol 10259. Springer, Cham. https://doi.org/10.1007/978-3-319-59758-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59758-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59757-7

  • Online ISBN: 978-3-319-59758-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics