Skip to main content

Accelerating Large-Scale Human Action Recognition with GPU-Based Spark

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing - PCM 2016 (PCM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9917))

Included in the following conference series:

  • 2553 Accesses

Abstract

In this paper, a large-scale human action recognition system is proposed which is built upon the combination of the rising big data processing technology Spark and the powerful Graphics Processing Unit (GPU) in order to fully utilize the efficient in-memory computing ability of Spark and the fine-grained parallel computing capacity of GPU for visual data processing. A number of key algorithms for human action recognition including trajectory based feature extraction, Gaussian Mixture Model (GMM) generation and Fisher Vector (FV) encoding are performed with the proposed GPU-based Spark framework. The experimental results on the benchmark human action dataset Hollywood-2 demonstrate that the proposed GPU-based Spark framework is able to dramatically accelerate the process of human action recognition.

This work was supported in part by the National Natural Science Foundation of China under Grant 61472281, the “Shu Guang” project of Shanghai Municipal Education Commission and Shanghai Education Development Foundation under Grant 12SG23, and the Program for Professor of Special Appointment (Eastern Scholar) at the Shanghai Institutions of Higher Learning under Grant GZ2015005.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, H., Kläser, A., Schmid, C., Liu, C.L.: Action recognition by dense trajectories. In: Proceedings of CVPR 2011, pp. 3169–3176, June 2011

    Google Scholar 

  2. Wang, H., Schmid, C.: Action recognition with improved trajectories. In: Proceedings of ICCV 2013, pp. 3551–3558, December 2013

    Google Scholar 

  3. Wang, H., Yi, Y., Wu, J.: Human action recognition with trajectory based covariance descriptor. In: Proceedings of ACM MM 2015, pp. 1175–1178, October 2015

    Google Scholar 

  4. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)

    Article  Google Scholar 

  5. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster computing with working sets. In: Proceedings of HotCloud 2010, p. 10, June 2010

    Google Scholar 

  6. Hadoop. http://hadoop.apache.org/

  7. CUDA guide. http://docs.nvidia.com/cuda/cuda-c-programming-guide/

  8. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.-A.: StarPU: a unified platform for task scheduling on heterogeneous multicore architectures. In: Sips, H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp. 863–874. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03869-3_80

    Chapter  Google Scholar 

  9. Linderman, M., Collins, J., Wang, H., Meng, T.: Merge: a programming model for heterogeneous multi-core systems. In: Proceedings of ASPLOS 2008, pp. 287–296, March 2008

    Google Scholar 

  10. Wernsing, J.R., Stitt, G.: Elastic computing: a portable optimization framework for hybrid computers. Parallel Comput. 38(8), 438–464 (2012)

    Article  Google Scholar 

  11. He, B., Fang, W., Luo, Q., Govindaraju, N., Wang, T.: Mars: a MapReduce framework on graphics processors. In: Proceedings of PACT 2008, pp. 260–269, October 2008

    Google Scholar 

  12. Wang, H., Xiao, B., Wang, L., Zhu, F., Jiang, Y.G., Wu, J.: CHCF: a cloud-based heterogeneous computing framework for large-scale image retrieval. IEEE Trans. Circ. Syst. Video Technol. 25(12), 1900–1913 (2015)

    Article  Google Scholar 

  13. Wang, H., Zheng, X., Xiao, B.: Large-scale human action recognition with Spark. In: Proceedings of MMSP 2015, pp. 1–6, October 2015

    Google Scholar 

  14. Perronnin, F., Dance, C.: Fisher kernels on visual vocabularies for image categorization. In: Proceedings of CVPR 2007, pp. 1–8, June 2007

    Google Scholar 

  15. Marszalek, M., Laptev, I., Schmid, C.: Actions in context. In: Proceedings of CVPR 2009, pp. 2929–2936, June 2009

    Google Scholar 

  16. Google protobuf. https://code.google.com/p/protobuf/

  17. Oneata, D., Verbeek, J., Schmid, C.: Action and event recognition with Fisher vectors on a compact feature set. In: Proceedings of ICCV 2013, pp. 1817–1824, December 2013

    Google Scholar 

  18. Sivic, J., Zisserman, A.: Video google: a text retrieval approach to object matching in videos. In: ICCV 2003, pp. 1470–1477, October 2003

    Google Scholar 

  19. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Royal Stat. Soc. 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanli Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Wang, H., Zheng, X., Xiao, B. (2016). Accelerating Large-Scale Human Action Recognition with GPU-Based Spark. In: Chen, E., Gong, Y., Tie, Y. (eds) Advances in Multimedia Information Processing - PCM 2016. PCM 2016. Lecture Notes in Computer Science(), vol 9917. Springer, Cham. https://doi.org/10.1007/978-3-319-48896-7_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48896-7_66

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48895-0

  • Online ISBN: 978-3-319-48896-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics