Abstract
Network densification is the most important way to improve the network capacity and hence is widely adopted to handle the ever-increasing mobile traffic demand. However, network densification will make the inter-cell interference severe and also significantly increase the energy budget. Multicell cooperative transmission is an efficient way to mitigate the inter-cell interference and plays an important role in energy efficiency optimization. This paper investigates the energy efficient multicell cooperation strategy for dense wireless networks. Joint cluster forming and beamforming are considered to optimize the energy efficiency (evaluated by bits/Hz/J). The optimization problem is then decoupled into two subproblems, i.e., energy efficient beamforming problem and energy efficient cluster forming problem. The fractional programming and Lagrangian duality theory are used to obtain the optimal beamformer. Coalition formation game theory is exploited to solve the cluster forming problem. The proposed energy efficient clustering and beamforming strategy can provide flexible network service according to spatially uneven traffic and greatly improve the network energy efficiency.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Andrews, J.G., Buzzi, S., Choi, W., Hanly, S.V., Lozano, A., Soong, A.C.K., Zhang, J.C.: What will 5G be? IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014). doi:10.1109/JSAC.2014.2328098
Apt, K.R., Radzik, T.: Stable partitions in coalitional games. arXiv preprint cs/0605132 (2006)
Haijun, Z., Hui, L., Chunxiao, J., Xiaoli, C., Nallanathan, A., Xiangming, W.: A practical semidynamic clustering scheme using affinity propagation in cooperative picocells. IEEE Trans. Veh. Technol. 64(9), 4372–4377 (2015). doi:10.1109/TVT.2014.2361931
He, S., Huang, Y., Yang, L., Ottersten, B., Hong, W.: Energy efficient coordinated beamforming for multicell system: duality-based algorithm design and massive mimo transition. IEEE Trans. Commun. 63(12), 4920–4935 (2015). doi:10.1109/TCOMM.2015.2496948
Heliot, F., Imran, M.A., Tafazolli, R.: Energy efficiency analysis of idealized coordinated multi-point communication system. In: 2011 IEEE 73rd Vehicular Technology Conference (VTC Spring), pp. 1–5 (2011). doi:10.1109/VETECS.2011.5956410
Hong, M., Sun, R., Baligh, H., Luo, Z.Q.: Joint base station clustering and beamformer design for partial coordinated transmission in heterogeneous networks. IEEE J. Sel. Areas Commun. 31(2), 226–240 (2013). doi:10.1109/JSAC.2013.130211
Jagannathan, R.: On some properties of programming problems in parametric form pertaining to fractional programming. Manage. Sci. 12(7), 609–615 (1966)
Lozano, A., Heath, R.W., Andrews, J.G.: Fundamental limits of cooperation. IEEE Trans. Inf. Theory 59(9), 5213–5226 (2013)
Pantisano, F., Bennis, M., Saad, W., Verdone, R., Latva-aho, M.: On the dynamic formation of cooperative multipoint transmissions in small cell networks. In: 2012 IEEE Globecom Workshops (GC Wkshps), pp. 1139–1144 (2012). doi:10.1109/GLOCOMW.2012.6477739
Qingjiang, S., Razaviyayn, M., Zhi-Quan, L., Chen, H.: An iteratively weighted mmse approach to distributed sum-utility maximization for a mimo interfering broadcast channel. IEEE Trans. Signal Process. 59(9), 4331–4340 (2011). doi:10.1109/TSP.2011.2147784
Saad, W., Han, Z., Debbah, M., Hjørungnes, A., Başar, T.: Coalitional game theory for communication networks. IEEE Signal Process. Magaz. 26(5), 77–97 (2009)
Somekh, O., Simeone, O., Bar-Ness, Y., Haimovich, A.M., Shamai, S.: Cooperative multicell zero-forcing beamforming in cellular downlink channels. IEEE Trans. Inf. Theory 55(7), 3206–3219 (2009). doi:10.1109/TIT.2009.2021371
Soret, B., Hua, W., Pedersen, K.I., Rosa, C.: Multicell cooperation for LTE-advanced heterogeneous network scenarios. IEEE Wirel. Commun. 20(1), 27–34 (2013). doi:10.1109/MWC.2013.6472196
Wei, X., Yuke, C., Hua, Z., Li, G.Y., Xiaohu, Y.: Robust beamforming with partial channel state information for energy efficient networks. IEEE J. Sel. Areas Commun. 33(12), 2920–2935 (2015). doi:10.1109/JSAC.2015.2478720
Zengfeng, Z., Lingyang, S., Zhu, H., Saad, W.: Coalitional games with overlapping coalitions for interference management in small cell networks. IEEE Trans. Wirel. Commun. 13(5), 2659–2669 (2014). doi:10.1109/TWC.2014.032514.130942
Zhang, H., Chu, X., Guo, W., Wang, S.: Coexistence of wi-fi and heterogeneous small cell networks sharing unlicensed spectrum. IEEE Commun. Magaz. 53(3), 158–164 (2015). doi:10.1109/MCOM.2015.7060498
Zhang, H., Jiang, C., Cheng, J., Leung, V.C.M.: Cooperative interference mitigation and handover management for heterogeneous cloud small cell networks. IEEE Wirel. Commun. 22(3), 92–99 (2015). doi:10.1109/MWC.2015.7143331
Zhang, H., Jiang, C., Mao, X., Chen, H.H.: Interference-limited resource optimization in cognitive femtocells with fairness and imperfect spectrum sensing. IEEE Trans. Veh. Technol. 65(3), 1761–1771 (2016). doi:10.1109/TVT.2015.2405538
Acknowledgment
This work is supported by the National Natural Science Foundation of China, No. 61271179, the Beijing Municipal Science and Technology Commission research fund project “Research on 5G Network Architecture and Its Intelligent Management Technologies”, No. D151100000115002, and the Fundamental Research Funds for the Central Universities, No. 2014ZD03-01.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Chen, Y., Wen, X., Lu, Z., Shao, H., Lu, J., Jing, W. (2017). Energy Efficient Clustering and Beamforming for Cooperative Multicell Networks. In: Cheng, J., Hossain, E., Zhang, H., Saad, W., Chatterjee, M. (eds) Game Theory for Networks. GameNets 2016. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 174. Springer, Cham. https://doi.org/10.1007/978-3-319-47509-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-47509-7_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-47508-0
Online ISBN: 978-3-319-47509-7
eBook Packages: Computer ScienceComputer Science (R0)