Skip to main content

Top-k Dominance Range-Based Uncertain Queries

  • Conference paper
  • First Online:
Databases Theory and Applications (ADC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9877))

Included in the following conference series:

Abstract

Most of the existing efforts for probabilistic skyline queries have used data modeling where the appearance of the object is uncertain while the attribute values of objects are certain. In many real-life applications, the values of an uncertain object can be in a continuous range that a probability density function is employed to describe the distribution of the values. In addition, the “interest-ingness” of the objects as a single criterion for measuring skyline probability may result in missing some desirable data objects. In this paper, we introduce a new operator, namely, the Top-k Dominating Range (TkDR) query, to identify the subset of truly interesting objects by considering objects’ dominance scores. We devise the ranking criterion to formalize the TkDR query and propose three algorithms for processing the TkDR query. Performance evaluations are conducted on both real-life and synthetic datasets to demonstrate the efficiency, effectiveness and scalability of our proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. He, G., Chen, L., Zeng, C., Zheng, Q., Zhou, G.: Probabilistic skyline queries on uncertain time series. Neurocomputing 191, 224–237 (2016)

    Article  Google Scholar 

  2. Zhang, Y., Zhang, W., Lin, X., Jiang, B., Pei, J.: Ranking uncertain sky: the probabilistic top-k skyline operator. Inf. Syst. 36(5), 898–915 (2011)

    Article  Google Scholar 

  3. Cheng, R., Singh, S., Prabhakar, S., Shah, R., Vitter, J.S., Xia, Y.: Efficient join processing over uncertain data. In: Proceedings of the 15th ACM International Conference on Information and Knowledge Management 2006, pp. 738–747. ACM (2006)

    Google Scholar 

  4. Yiu, M.L., Mamoulis, N.: Multi-dimensional top-k dominating queries. VLDB J. 18(3), 695–718 (2009)

    Article  Google Scholar 

  5. Lian, X., Chen, L.: Top-k dominating queries in uncertain databases. In: Proceedings of the 12th International Conference on Extending Database Technology: Advances in Database Technology 2009, pp. 660–671. ACM (2009)

    Google Scholar 

  6. Vlachou, A., Doulkeridis, C., Halkidi, M.: Discovering representative skyline points over distributed data. In: Ailamaki, A., Bowers, S. (eds.) SSDBM 2012. LNCS, vol. 7338, pp. 141–158. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Lee, J., You, G.-W.: Hwang, S.-w.: Personalized top-k skyline queries in high-dimensional space. Inf. Syst. 34(1), 45–61 (2009)

    Article  Google Scholar 

  8. Zhou, B., Yao, Y.: Evaluating information retrieval system performance based on user preference. J. Intell. Inf. Syst. 34(3), 227–248 (2010)

    Article  Google Scholar 

  9. Nanongkai, D., Sarma, A.D., Lall, A., Lipton, R.J., Xu, J.: Regret-minimizing representative databases. Proc. VLDB Endowment 3(1–2), 1114–1124 (2010)

    Article  Google Scholar 

  10. Papadias, D., Tao, Y., Fu, G., Seeger, B.: An optimal and progressive algorithm for skyline queries. In: Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data 2003, pp. 467–478. ACM (2003)

    Google Scholar 

  11. Pei, J., Jiang, B., Lin, X., Yuan, Y.: Probabilistic skylines on uncertain data. In: Proceedings of the 33rd international conference on Very large data bases 2007, pp. 15–26. VLDB Endowment

    Google Scholar 

  12. Gao, Y., Miao, X., Cui, H., Chen, G., Li, Q.: Processing k-skyband, constrained skyline, and group-by skyline queries on incomplete data. Expert Syst. Appl. 41(10), 4959–4974 (2014)

    Article  Google Scholar 

  13. Gao, Y., Liu, Q., Chen, L., Chen, G., Li, Q.: Efficient algorithms for finding the most desirable skyline objects. Knowl. Based Syst. 89, 250–264 (2015)

    Article  Google Scholar 

  14. Borzsony, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings of the 17th International Conference on Data Engineering, 2001, pp. 421–430. IEEE (2001)

    Google Scholar 

  15. Tan, K.-L., Eng, P.-K., Ooi, B.C.: Efficient progressive skyline computation. In: VLDB 2001, pp. 301–310 (2001)

    Google Scholar 

  16. Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: an online algorithm for skyline queries. In: Proceedings of the 28th International Conference on Very Large Data Bases 2002, pp. 275–286. VLDB Endowment

    Google Scholar 

  17. Morse, M., Patel, J.M., Jagadish, H.: Efficient skyline computation over low-cardinality domains. In: Proceedings of the 33rd International Conference on Very Large Data Bases 2007, pp. 267–278. VLDB Endowment (2007)

    Google Scholar 

  18. Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with presorting. In: ICDE 2003, pp. 717–719 (2003)

    Google Scholar 

  19. Cormode, G., Li, F., Yi, K.: Semantics of ranking queries for probabilistic data and expected ranks. Paper presented at the Proceedings of the 2009 IEEE International Conference on Data Engineering (2009)

    Google Scholar 

  20. Soliman, M.A., Ilyas, I.F., Chang, K.C.-C.: Top-k query processing in uncertain databases. Paper presented at the Proceedings of the 23rd International Conference on Data Engineering

    Google Scholar 

  21. Hua, M., Pei, J., Zhang, W., Lin, X.: Efficiently answering probabilistic threshold top-k queries on uncertain data. Paper presented at the Proceedings of the 2008 IEEE 24th International Conference on Data Engineering (2008)

    Google Scholar 

  22. Zhang, X., Chomicki, J.: Semantics and evaluation of top-k queries in probabilistic databases. Distrib. Parallel Databases 26(1), 67–126 (2009)

    Article  Google Scholar 

  23. Soliman, M.A., Ilyas, I.F.: Ranking with uncertain scores. Paper presented at the Proceedings of the 25th International Conference on Data Engineering

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ha Thanh Huynh Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Nguyen, H.T.H., Cao, J. (2016). Top-k Dominance Range-Based Uncertain Queries. In: Cheema, M., Zhang, W., Chang, L. (eds) Databases Theory and Applications. ADC 2016. Lecture Notes in Computer Science(), vol 9877. Springer, Cham. https://doi.org/10.1007/978-3-319-46922-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46922-5_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46921-8

  • Online ISBN: 978-3-319-46922-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics