Abstract
Khudra is a block cipher proposed by Souvik Kolay and Debdeep Mukhopadhyay in the SPACE 2014 conference which is applicable to Field Programmable Gate Arrays (FPGAs). It is an 18-round lightweight cipher based on recursive Feistel structure, with a 64-bit block size and 80-bit key size. The designers indicated that 18 rounds of Khudra provide sufficient security margin for related key attacks. But in this paper, we obtain \(2^{16}\) 14-round related-key impossible differentials of Khudra, and based on these related-key impossible differentials for 32 related keys, we launch an attack on the full Khudra with data complexity of \(2^{63}\) related-key chosen-plaintexts, time complexity of about \(2^{68.46}\) encryptions and memory complexity of \(2^{64}\). This is the first known attack on full Khudra.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bahrak, B., Aref, M.R.: Impossible differential attack on seven-round AES-128. IET Inf. Secur. 2, 28–32 (2008)
Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The SIMON and SPECK Families of Lightweight Block Ciphers. Cryptology ePrint Archive (2013). https://eprint.iacr.org/2013/404
Biham, E.: New types of cryptanalytic attacks using related keys. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 398–409. Springer, Heidelberg (1994)
Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack reduced to 31 rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999)
Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J. Cryptology 4(1), 3–72 (1991)
Biryukov, A.: Impossible differential attack. In: van Tilborg, H.C.A., Jajodia, S. (eds.) Encyclopedia of Cryptography and Security, p. 597. Springer, New York (2011)
Biryukov, A., Wagner, D.: Advanced slide attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 589–606. Springer, Heidelberg (2000)
Bogdanov, A.A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007)
Borghoff, J., et al.: PRINCE – a low-latency block cipher for pervasive computing applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 208–225. Springer, Heidelberg (2012)
Boura, C., Naya-Plasencia, M., Suder, V.: Scrutinizing and improving impossible differential attacks: applications to CLEFIA, Camellia, LBlock and Simon. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 179–199. Springer, Heidelberg (2014)
Dai, Y., Chen, S.: Security analysis of Khudra: a lightweight block cipher for FPGAs. Secur. Commun. Netw. (2015)
Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer, Heidelberg (2011)
Jakimoski, G., Desmedt, Y.: Related-key differential cryptanalysis of 192-bit key AES variants. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 208–221. Springer, Heidelberg (2004)
Kim, J.-S., Hong, S.H., Sung, J., Lee, S.-J., Lim, J.-I., Sung, S.H.: Impossible differential cryptanalysis for block cipher structures. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 82–96. Springer, Heidelberg (2003)
Knudsen, L.: DEAL - a 128-bit block cipher. In: NIST AES Proposal (1998)
Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE 1995. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)
Kolay, S., Mukhopadhyay, D.: Khudra: a new lightweight block cipher for FPGAs. In: Chakraborty, R.S., Matyas, V., Schaumont, P. (eds.) SPACE 2014. LNCS, vol. 8804, pp. 126–145. Springer, Heidelberg (2014)
Langford, S.K., Hellman, M.E.: Differential-linear cryptanalysis. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 17–25. Springer, Heidelberg (1994)
Li, R., Sun, B., Li, C.: Impossible differential cryptanalysis of SPN ciphers. IET Inf. Secur. 5(2), 111–120 (2011)
Luo, Y., Lai, X., Zhongming, W., Gong, G.: A unified method for finding impossible differentials of block cipher structures. Inf. Sci. 263, 211–220 (2014)
Ma, X., Qiao, K.: Related-key Rectangle Attack on Round-reduced Khudra Block Cipher. Cryptology ePrint Archive, Report 2015/533 (2015). http://eprint.iacr.org/
Mala, H., Dakhilalian, M., Shakiba, M.: Impossible differential cryptanalysis of reduced-round Camellia-256. IET Inf. Secur. 5(3), 129–134 (2011)
Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)
Tolba, M., Abdelkhalek, A., Youssef, A.M.: Meet-in-the-middle attacks on round-reduced Khudra. In: Chakraborty, R.S., Schwabe, P., Solworth, J. (eds.) SPACE 2015. LNCS, vol. 9354, pp. 127–138. Springer, Heidelberg (2015)
Wagner, D.: The boomerang attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 156–170. Springer, Heidelberg (1999)
Wu, S., Wang, M.: Automatic search of truncated impossible differentials for word-oriented block ciphers. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 283–302. Springer, Heidelberg (2012)
Wu, W., Zhang, L.: LBlock: a lightweight block cipher. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011)
Xue, W., Lai, X.: Impossible differential cryptanalysis of MARS-like structures. IET Inf. Secur. 9(4), 219–222 (2015)
Özen, M., Çoban, M., Karakoç, F.: A guess-and-determine attack on reduced-round Khudra and weak keys of full cipher. Cryptology ePrint Archive, Report 2015/1163 (2015). http://eprint.iacr.org/
Acknowledgements
The authors would like to thank anonymous reviewers for their helpful comments and suggestions. The work of this paper was supported by the National Key Basic Research Program of China (2013CB834203), the National Natural Science Foundation of China (Grants 61472417, 61402469 and 61472415), the Strategic Priority Research Program of Chinese Academy of Sciences under Grant XDA06010702, and the State Key Laboratory of Information Security, Chinese Academy of Sciences.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Yang, Q., Hu, L., Sun, S., Song, L. (2016). Related-Key Impossible Differential Analysis of Full Khudra . In: Ogawa, K., Yoshioka, K. (eds) Advances in Information and Computer Security. IWSEC 2016. Lecture Notes in Computer Science(), vol 9836. Springer, Cham. https://doi.org/10.1007/978-3-319-44524-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-44524-3_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-44523-6
Online ISBN: 978-3-319-44524-3
eBook Packages: Computer ScienceComputer Science (R0)