Abstract
As a three-dimensional object, there are a number of ways of slicing a generalised type-2 fuzzy set. In the context of the Mamdani Fuzzy Inferencing System, this paper concerns three accepted slicing strategies, the vertical slice, the wavy slice, and the horizontal slice or \(\alpha \)-plane. Two ways of defining the generalised type-2 fuzzy set, vertical slices and wavy slices, are presented. Fuzzification and inferencing is presented in terms of vertical slices. After that, the application of all three slicing strategies to defuzzification is described, and their strengths and weaknesses assessed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The alternative is the Takagi-Sugeno-Kang FIS for which the output membership functions are either linear or constant; defuzzification is superfluous as the outputs may be aggregated via a simple weighted sum.
- 2.
The optimised inferencing algorithms described in [11] employ vertical slices.
- 3.
Discretisation in itself brings an unavoidable element of approximation. However the exhaustive method does not subsequently introduce further inaccuracies.
- 4.
Independently of Liu, and at about the same time, Wagner and Hagras introduced the notion of zSlices [27], a concept very similar to that of \(\alpha \)-planes.
References
Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning. Inf. Sci. 8, 199–249 (1975)
Mendel, J.M., John, R.I.: Type-2 fuzzy sets made simple. IEEE Trans. Fuzzy Syst. 10(2), 117–127 (2002). http://dx.doi.org/10.1109/91.995115
Castillo, O., Melin, P.: A review on the design and optimization of interval type-2 fuzzy controllers. Appl. Soft Comput. 12, 1267–1278 (2012). http://dx.doi.org/10.1016/j.asoc.2011.12.010
Celik, E., Bilisik, O.N., Erdogan, M., Gumus, A.T., Baracli, H.: An integrated novel interval type-2 fuzzy MCDM method to improve customer satisfaction in public transportation for Istanbul. Transp. Res. Part E Logist. Transp. Rev. 58, 28–51 (2013)
Dereli, T., Altun, K.: Technology evaluation through the use of interval type-2 fuzzy sets and systems. Comput. Ind. Eng. 65(4), 624–633 (2013)
Abbadi, A., Nezli, L., Boukhetala, D.: A nonlinear voltage controller based on interval type 2 fuzzy logic control system for multimachine power systems. Int. J. Electr. Power Energy Syst. 45(1), 456–467 (2013)
Esposito, M., Pietro, G.D.: Interval type-2 fuzzy logic for encoding clinical practice guidelines. Knowl.-Based Syst. 54, 329–341 (2013). http://dx.doi.org/10.1016/j.knosys.2013.10.001
Castillo, O., Melin, P.: A review on interval type-2 fuzzy logic applications in intelligent control. Inf. Sci. 279, 615–631 (2014)
John, R.I., Coupland, S.: Type-2 fuzzy logic: a historical view. IEEE Comput. Intell. Mag. 2(1), 57–62 (2007). doi:10.1109/MCI.2007.357194
Linda, O., Manic, M.: General type-2 fuzzy C-means algorithm for uncertain fuzzy clustering. IEEE Trans. Fuzzy Syst. 20(5), 883–897 (2012). doi:10.1109/TFUZZ.2012.2187453
Greenfield, S., John, R.I.: Optimised generalised type-2 join and meet operations. In: Proceedings of FUZZ-IEEE 2007, pp. 141–146. London, July 2007
Lucas, L.A., Centeno, T.M., Delgado, M.R.: General type-2 fuzzy inference systems: analysis, design and computational aspects. In: Proceedings of FUZZ-IEEE 2007, pp. 1743–1747. London (2007)
Greenfield, S., Chiclana, F., John, R.I., Coupland, S.: The sampling method of defuzzification for type-2 fuzzy sets: experimental evaluation. Inf. Sci. 189, 77–92 (2012). http://dx.doi.org/10.1016/j.ins.2011.11.042
Zhou, S.M., Chiclana, F., John, R.I., Garibaldi, J.M.: Type-1 OWA operators for aggregating uncertain information with uncertain weights induced by type-2 linguistic quantifiers. Fuzzy Sets Syst. 159(24), 3281–3296 (2008). ISSN:0165-0114. http://dx.doi.org/10.1016/j.fss.2008.06.018
Liu, F.: An efficient centroid type-reduction strategy for general type-2 fuzzy logic system. Inf. Sci. 178(9), 2224–2236 (2008). doi:10.1016/j.ins.2007.11.014
Greenfield, S., Chiclana, F.: Defuzzification of the discretised generalised type-2 fuzzy set: experimental evaluation. Inf. Sci. 244, 1–25 (2013). http://dx.doi.org/10.1016/j.ins.2013.04.032
Greenfield, S., John, R.I.: The uncertainty associated with a type-2 fuzzy set. In: Seising, R. (ed.) Views on Fuzzy Sets and Systems from Different Perspectives. Studies in Fuzziness and Soft Computing, vol. 243, pp. 471–483. Springer, Heidelberg (2009). http://dx.doi.org/10.1007/978-3-540-93802-6_23
Leekwijck, W.V., Kerre, E.E.: Defuzzification: criteria and classification. Fuzzy Sets Syst. 108, 159–178 (1999). doi:10.1016/j.fss.2008.06.018
Mendel, J.M.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions. Prentice-Hall, PTR, Upper Saddle River (2001)
Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)
Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning - II. Inf. Sci. 8, 301–357 (1975)
Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning - III. Inf. Sci. 9, 43–80 (1975)
John, R.I.: Perception modelling using type-2 fuzzy sets. PhD thesis, De Montfort University (2000)
Greenfield, S., Chiclana, F.: Accuracy and complexity evaluation of defuzzification strategies for the discretised interval type-2 fuzzy set. Int. J. Approx. Reason. 54(8), 1013–1033 (2013). http://dx.doi.org/10.1016/j.ijar.2013.04.013
Greenfield, S., Chiclana, F.: Type-reduction of the discretised interval type-2 fuzzy set: approaching the continuous case through progressively finer discretisation. J. Artif. Intell. Soft Comput. Res. 1, 183–193 (2011)
Mendel, J.M., Liu, F., Zhai, D.: \(\alpha \)-plane representation for type-2 fuzzy sets: theory and applications. IEEE Trans. Fuzzy Syst. 17(5), 1189–1207 (2009)
Wagner, C., Hagras, H.: Toward general type-2 fuzzy logic systems based on zSlices. IEEE Trans. Fuzzy Syst. 18(4), 637–660 (2010)
Wu, D., Nie, M.: Comparison and practical implementation of type-reduction algorithms for type-2 fuzzy sets and systems. In: Proceedings of FUZZ-IEEE 2011, pp. 2131–2138. Taiwan (2011)
Greenfield, S., Chiclana, F., Coupland, S., John, R.I.: The collapsing method of defuzzification for discretised interval type-2 fuzzy sets. Inf. Sci. 179(13), 2055–2069 (2009). http://dx.doi.org/10.1016/j.ins.2008.07.011
Greenfield, S., Chiclana, F., John, R.I.: Type-reduction of the discretised interval type-2 fuzzy set. In: Proceedings of FUZZ-IEEE 2009, pp. 738–743. Jeju Island, Korea, August 2009
Nie, M., Tan, W.W.: Towards an efficient type-reduction method for interval type-2 fuzzy logic systems. In: Proceedings of FUZZ-IEEE 2008, pp. 1425–1432, Hong Kong, June 2008
Greenfield, S., Chiclana, F.: Combining the \(\alpha \)-plane representation with an interval defuzzification method. In: Proceedings of EUSFLAT-LFA 2011, pp. 920–927, Aix-les-Bains, July 2011
Greenfield, S., Chiclana, F.: The structure of the type-reduced set of a continuous type-2 fuzzy set. In: Proceedings of EUSFLAT 2013, Milan, September 2013. http://dx.doi.org/10.2991/eusflat.2013.102
Greenfield, S., Chiclana, F.: Type-reduced set structure and the truncated type-2 fuzzy set. Technical Report, DMU
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Greenfield, S., Chiclana, F. (2016). Slicing Strategies for the Generalised Type-2 Mamdani Fuzzy Inferencing System. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2016. Lecture Notes in Computer Science(), vol 9692. Springer, Cham. https://doi.org/10.1007/978-3-319-39378-0_18
Download citation
DOI: https://doi.org/10.1007/978-3-319-39378-0_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-39377-3
Online ISBN: 978-3-319-39378-0
eBook Packages: Computer ScienceComputer Science (R0)