Abstract
A major challenge for cardiac motion analysis is the high-dimensionality of the motion data. Conventionally, the AHA model is used for dimensionality reduction, which divides the left ventricle into 17 segments using criteria based on anatomical structures. In this paper, a novel method is proposed to divide the left ventricle into homogeneous parcels in terms of motion trajectories. We demonstrate that the motion-driven parcellation has good reproducibility and use it for data reduction and motion description on a dataset of 1093 subjects. The resulting motion descriptor achieves high performance on two exemplar applications, namely gender and age predictions. The proposed method has the potential to be applied to groupwise motion analysis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Mor-Avi, V., Lang, R.M., Badano, L.P., Belohlavek, M., et al.: Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics. Eur. J. Echocardiogr. 12(3), 167–205 (2011)
Suinesiaputra, A., Frangi, A.F., Kaandorp, T., Lamb, H.J., Bax, J.J., Reiber, J., Lelieveldt, B.P.F.: Automated detection of regional wall motion abnormalities based on a statistical model applied to multislice short-axis cardiac MR images. IEEE Trans. Med. Imaging 28(4), 595–607 (2009)
Cerqueira, M.D., Weissman, N.J., Dilsizian, V., Jacobs, A.K., et al.: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. Circulation 105(4), 539–542 (2002)
Yeo, B.T.T., Krienen, F.M., Sepulcre, J., Sabuncu, M.R., Lashkari, D., et al.: The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106(3), 1125–1165 (2011)
Shi, W., Jantsch, M., Aljabar, P., Pizarro, L., Bai, W., Wang, H., O’Regan, D., Zhuang, X., Rueckert, D.: Temporal sparse free-form deformations. Med. Image Anal. 17(7), 779–789 (2013)
Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imag. 18(8), 712–721 (1999)
Duchateau, N., De Craene, M., Piella, G., Silva, E., Doltra, A., Sitges, M., Bijnens, B.H., Frangi, A.F.: A spatiotemporal statistical atlas of motion for the quantification of abnormal myocardial tissue velocities. Med. Image Anal. 15(3), 316–328 (2011)
Ward, J.H.: Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58(301), 236–244 (1963)
Kulis, B., Jordan, M.I.: Revisiting k-means: New algorithms via Bayesian nonparametrics. In: ICML, pp. 513–520 (2012)
Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)
Thirion, B., Varoquaux, G., Dohmatob, E., Poline, J.B.: Which fMRI clustering gives good brain parcellations? Front. Neurosci. 8, 13 (2014)
Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Bai, W. et al. (2016). Beyond the AHA 17-Segment Model: Motion-Driven Parcellation of the Left Ventricle. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds) Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges. STACOM 2015. Lecture Notes in Computer Science(), vol 9534. Springer, Cham. https://doi.org/10.1007/978-3-319-28712-6_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-28712-6_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-28711-9
Online ISBN: 978-3-319-28712-6
eBook Packages: Computer ScienceComputer Science (R0)