Skip to main content

Reality Mining with Mobile Data: Understanding the Impact of Network Structure on Propagation Dynamics

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9531))

  • 1627 Accesses

Abstract

Recent studies have increasingly turned to graph theory to model Realistic Contact Networks (RCNs) for characterizing propagation dynamics. Several of these studies have demonstrated that RCNs are best described as having exponential degree distributions. In this article, based on the mobile data gathered from in-vehicle wireless devices, we show that RCNs do not always have exponential degree distributions, especially in dynamic environments. On this basis, a model is designed to recognize the structure of networks. Based on the model, we investigate the impacts of network structure on disease dynamics that is an important empirical study to the propagation dynamics. The time-varying infected number R is the important parameter that is used to quantify the disease dynamics. In this study, the prediction accuracy for R is improved by utilizing realistic structural knowledge mined by our recognition model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    R is defined as the number of infected cases during an epidemic over time.

  2. 2.

    In this study, the network with exponential degree distribution is named as “Exponential Network”.

  3. 3.

    This subnetwork is obtained by a time-based sample. It is the contact network of this day, August 26th, 2014.

References

  1. Ames, G.M., George, D.B., Hampson, C.P., Kanarek, A.R., McBee, C.D., Lockwood, D.R., Achter, J.D., Webb, C.T.: Using network properties to predict disease dynamics on human contact networks. In: Proceedings of the Royal Society B: Biological Sciences, pp. 1–7 (2011)

    Google Scholar 

  2. Bansal, S., Grenfell, B.T., Meyers, L.A.: When individual behaviour matters: homogeneous and network models in epidemiology. J. Roy. Soc. Interface 4(16), 879–891 (2007)

    Article  Google Scholar 

  3. Belik, V., Geisel, T., Brockmann, D.: Natural human mobility patterns and spatial spread of infectious diseases. Phys. Rev. X 1(1), 011001 (2011)

    Google Scholar 

  4. Charaudeau, S., Pakdaman, K., Boëlle, P.Y.: Commuter mobility and the spread of infectious diseases: application to influenza in france. PloS one 9(1), e83002 (2014)

    Article  Google Scholar 

  5. Chen, Z., Gao, L., Kwiaty, K.: Modeling the spread of active worms. In: INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer and Communications. IEEE Societies. vol. 3, pp. 1890–1900. IEEE (2003)

    Google Scholar 

  6. Colizza, V., Barrat, A., Barthelemy, M., Valleron, A.J., Vespignani, A.: Modeling the worldwide spread of pandemic influenza: baseline case and containment interventions. PLoS Med. 4(1), e13 (2007)

    Article  Google Scholar 

  7. Du, N., Song, L., Yuan, M., Smola, A.J.: Learning networks of heterogeneous influence. Adv. Neural Inf. Proc. Syst, 2780–2788 (2012)

    Google Scholar 

  8. Garetto, M., Gong, W., Towsley, D.: Modeling malware spreading dynamics. In: INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer and Communications. IEEE Societies. vol. 3, pp. 1869–1879. IEEE (2003)

    Google Scholar 

  9. Gomez Rodriguez, M., Leskovec, J., Krause, A.: Inferring networks of diffusion and influence. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1019–1028. ACM (2010)

    Google Scholar 

  10. Gomez-Rodriguez, M., Leskovec, J., Krause, A.: Inferring networks of diffusion and influence. ACM Trans. Knowl. Discov. Data (TKDD) 5(4), 21 (2012)

    Google Scholar 

  11. Groendyke, C., Welch, D., Hunter, D.R.: A network-based analysis of the 1861 hagelloch measles data. Biometrics 68(3), 755–765 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hufnagel, L., Brockmann, D., Geisel, T.: Forecast and control of epidemics in a globalized world. Proc. National Acad. Sci. U.S.A. 101(42), 15124–15129 (2004)

    Article  Google Scholar 

  13. Keeling, M.J., Rohani, P.: Modeling infectious diseases in humans and animals. Princeton University Press, Princeton (2008)

    MATH  Google Scholar 

  14. Lappas, T., Terzi, E., Gunopulos, D., Mannila, H.: Finding effectors in social networks. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1059–1068. ACM (2010)

    Google Scholar 

  15. Leskovec, J., Backstrom, L., Kleinberg, J.: Meme-tracking and the dynamics of the news cycle. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 497–506. ACM (2009)

    Google Scholar 

  16. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.: Cost-effective outbreak detection in networks. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 420–429. ACM (2007)

    Google Scholar 

  17. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Statistical properties of community structure in large social and information networks. In: Proceedings of the 17th International Conference on World Wide Web, pp. 695–704. ACM (2008)

    Google Scholar 

  18. Lipsitch, M., Cohen, T., Cooper, B., Robins, J.M., Ma, S., James, L., Gopalakrishna, G., Chew, S.K., Tan, C.C., Samore, M.H., et al.: Transmission dynamics and control of severe acute respiratory syndrome. Science 300(5627), 1966–1970 (2003)

    Article  Google Scholar 

  19. Luke, D.A., Stamatakis, K.A.: Systems science methods in public health: dynamics, networks, and agents. Annu. Rev. Publ. Health 33, 357–376 (2012)

    Article  Google Scholar 

  20. Martín, G., Marinescu, M.C., Singh, D.E., Carretero, J.: Leveraging social networks for understanding the evolution of epidemics. BMC Syst. Biol. 5(Suppl 3), S14 (2011)

    Article  Google Scholar 

  21. Mukandavire, Z., Liao, S., Wang, J., Gaff, H., Smith, D.L., Morris, J.G.: Estimating the reproductive numbers for the 2008–2009 cholera outbreaks in zimbabwe. Proc. National Acad. Sci. 108(21), 8767–8772 (2011)

    Article  Google Scholar 

  22. Myers, S., Leskovec, J.: On the convexity of latent social network inference. In: Advances in Neural Information Processing Systems, pp. 1741–1749 (2010)

    Google Scholar 

  23. Myers, S.A., Zhu, C., Leskovec, J.: Information diffusion and external influence in networks. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 33–41. ACM (2012)

    Google Scholar 

  24. Riley, S., Fraser, C., Donnelly, C.A., Ghani, A.C., Abu-Raddad, L.J., Hedley, A.J., Leung, G.M., Ho, L.M., Lam, T.H., Thach, T.Q., et al.: Transmission dynamics of the etiological agent of sars in hong kong: impact of public health interventions. Science 300(5627), 1961–1966 (2003)

    Article  Google Scholar 

  25. Rodrigue, M.G., Leskovec, J., Balduzzi, D., Schölkopf, B.: Uncovering the structure and temporal dynamics of information propagation. Netw. Sci. 2(01), 26–65 (2014)

    Article  Google Scholar 

  26. Rodriguez, M.G., Schölkopf, B.: Submodular inference of diffusion networks from multiple trees (2012). arXiv preprint arXiv:1205.1671

  27. Stadler, T., Kouyos, R., von Wyl, V., Yerly, S., Böni, J., Bürgisser, P., Klimkait, T., Joos, B., Rieder, P., Xie, D., et al.: Estimating the basic reproductive number from viral sequence data. Mol. Biol. Evol. 29(1), 347–357 (2012)

    Article  Google Scholar 

  28. Team, W.E.R.: Ebola virus disease in west africathe first 9 months of the epidemic and forward projections. N Engl. J. Med. 371(16), 1481–1495 (2014)

    Article  Google Scholar 

  29. Tomé, T., Ziff, R.M.: Critical behavior of the susceptible-infected-recovered model on a square lattice. Phys. Rev. E 82(5), 051921 (2010)

    Article  Google Scholar 

  30. Vazquez-Prokopec, G.M., Bisanzio, D., Stoddard, S.T., Paz-Soldan, V., Morrison, A.C., Elder, J.P., Ramirez-Paredes, J., Halsey, E.S., Kochel, T.J., Scott, T.W., et al.: Using gps technology to quantify human mobility, dynamic contacts and infectious disease dynamics in a resource-poor urban environment. PloS one 8(4), e58802 (2013)

    Article  Google Scholar 

  31. Woolhouse, M.: How to make predictions about future infectious disease risks. Philos. Trans. Royal Soci. B: Biol. Sci. 366(1573), 2045–2054 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by Guangdong University of Petrochemical Technology’s Internal Project No. 2012RC106, Educational Commission of Guangdong Province, China Project No. 2013KJCX0131, Guangdong High-Tech Development Fund No. 2013B010401035, 2013 Special Fund of Guangdong Higher School Talent Recruitment, National Natural Science Foundation of China under Grant 61401107, 2013 Top Level Talents Project in “Sailing Plan of Guangdong Province”, and 2014 Guangdong Province Outstanding Young Professor Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanfang Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Chen, Y., Crespi, N., Shu, L., Myoung Lee, G. (2015). Reality Mining with Mobile Data: Understanding the Impact of Network Structure on Propagation Dynamics. In: Wang, G., Zomaya, A., Martinez, G., Li, K. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2015. Lecture Notes in Computer Science(), vol 9531. Springer, Cham. https://doi.org/10.1007/978-3-319-27140-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27140-8_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27139-2

  • Online ISBN: 978-3-319-27140-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics