Skip to main content

A Tool for the Automated Verification of Nash Equilibria in Concurrent Games

  • Conference paper
  • First Online:
Theoretical Aspects of Computing - ICTAC 2015 (ICTAC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9399))

Included in the following conference series:

  • 837 Accesses

Abstract

Reactive Modules is a high-level specification language for concurrent and multi-agent systems, used in a number of practical model checking tools. Reactive Modules Games is a game-theoretic extension of Reactive Modules, in which concurrent agents in the system are assumed to act strategically in an attempt to satisfy a temporal logic formula representing their individual goal. The basic analytical concept for Reactive Modules Games is Nash equilibrium. In this paper, we describe a tool through which we can automatically verify Nash equilibrium strategies for Reactive Modules Games. Our tool takes as input a system, specified in the Reactive Modules language, a representation of players’ goals (expressed as CTL formulae), and a representation of players strategies; it then checks whether these strategies form a Nash equilibrium of the Reactive Modules Game passed as input. The tool makes extensive use of conventional temporal logic satisfiability and model checking techniques. We first give an overview of the theory underpinning the tool, briefly describe its structure and implementation, and conclude by presenting a worked example analysed using the tool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Goals can be given by any logic with a Kripke structure semantics. Although we will consider CTL goals here, due to generality, at this point all definitions will be made leaving this open. Indeed, one could extend our implementation to SRML games with CTL\(^*\) or \(\mu \)-calculus goals.

  2. 2.

    \({\textsc {EAGLE}}\) is being improved and updated frequently. The implementation details in this paper constitute the main design decisions at the moment of submission to ICTAC (in June 2015).

References

  1. Alur, R., Henzinger, T.A., Mang, F., Qadeer, S., Rajamani, S., Tasiran, S.: MOCHA: modularity in model checking. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998. LNCS, vol. 1427, pp. 521–525. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  2. Alur, R., Henzinger, T.A.: Reactive modules. Form. Meth. Syst. Des. 15(1), 7–48 (1999)

    Article  MathSciNet  Google Scholar 

  3. Berwanger, D., Chatterjee, K., De Wulf, M., Doyen, L., Henzinger, T.A.: Alpaga: a tool for solving parity games with imperfect information. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 58–61. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  4. Brenguier, R.: PRALINE: a tool for computing nash equilibria in concurrent games. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 890–895. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  5. Cermák, P., Lomuscio, A., Mogavero, F., Murano, A.: MCMAS-SLK: a model checker for the verification of strategy logic specifications. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 525–532. Springer, Heidelberg (2014)

    Google Scholar 

  6. David, A., Jensen, P.G., Larsen, K.G., Mikucionis, M., Taankvist, J.H.: Uppaal Stratego. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 206–211. Springer, Heidelberg (2015)

    Google Scholar 

  7. Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science Volume B: Formal Models and Semantics, pp. 996–1072. Elsevier, Amsterdam (1990)

    Google Scholar 

  8. Fisman, D., Kupferman, O., Lustig, Y.: Rational synthesis. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 190–204. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Friedmann, O., Lange, M.: Solving parity games in practice. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 182–196. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Gutierrez, J., Harrenstein, P., Wooldridge, M.: Iterated boolean games. In: IJCAI, IJCAI/AAAI (2013)

    Google Scholar 

  11. Gutierrez, J., Harrenstein, P., Wooldridge, M.: Verification of temporal equilibrium properties of games on Reactive Modules. Technical report, University of Oxford (2015)

    Google Scholar 

  12. Kupferman, O., Vardi, M., Wolper, P.: Module checking. Inf. Comput. 164(2), 322–344 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: a model checker for the verification of multi-agent systems. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 682–688. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge (1994)

    MATH  Google Scholar 

  16. Prezza, N.: CTLSAT (2015). https://github.com/nicolaprezza/CTLSAT

  17. Reynaud, D., Mr. Waffles: (2015). http://mrwaffles.gforge.inria.fr

  18. Toumi, A.: Equilibrium checking in Reactive Modules games. Technical report, Department of Computer Science, University of Oxford (2015)

    Google Scholar 

  19. van der Hoek, W., Lomuscio, A., Wooldridge, M.: On the complexity of practical ATL model checking. In: AAMAS, pp. 201–208. ACM (2006)

    Google Scholar 

Download references

Acknowledgment

\({\textsc {EAGLE}}\) was implemented by Toumi as part of his final Computer Science project [18] at Oxford. Both \({\textsc {EAGLE}}\) and [18] can be obtained from him. (To obtain \({\textsc {EAGLE}}\) or [18], please, send an email to Alexis.Toumi at gmail.com). We also acknowledge the support of the ERC Research Grant 291528 (“RACE”) at Oxford.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Gutierrez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Toumi, A., Gutierrez, J., Wooldridge, M. (2015). A Tool for the Automated Verification of Nash Equilibria in Concurrent Games. In: Leucker, M., Rueda, C., Valencia, F. (eds) Theoretical Aspects of Computing - ICTAC 2015. ICTAC 2015. Lecture Notes in Computer Science(), vol 9399. Springer, Cham. https://doi.org/10.1007/978-3-319-25150-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25150-9_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25149-3

  • Online ISBN: 978-3-319-25150-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics