Abstract
Similarity search in graph databases has been widely studied in graph query processing in recent years. With the fast accumulation of graph databases, it is worthwhile to develop a fast algorithm to support similarity search in large-scale graph databases. In this paper, we study k-NN similarity search problem via locality sensitive hashing. We propose a fast graph search algorithm, which first transforms complex graphs into vectorial representations based on the prototypes in the database and then accelerates query efficiency in Euclidean space by employing locality sensitive hashing. Additionally, a general retrieval framework is established in our approach. Experiments on three real datasets show that our work achieves high performance both on the accuracy and the efficiency of the presented algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing scheme based on p-stable distributions. In: SCG, pp. 253–262. ACM (2004)
Ding, C., He, X.: K-means clustering via principal component analysis. In: ICML, p. 29. ACM (2004)
Fernández, M.L., Valiente, G.: A graph distance metric combining maximum common subgraph and minimum common supergraph. Pattern Recogn. Lett. 22(6), 753–758 (2001)
Gao, X., Xiao, B., Tao, D., Li, X.: A survey of graph edit distance. Pattern Anal. Appl. 13(1), 113–129 (2010)
He, H., Singh, A.K.: Closure-tree: An index structure for graph queries. In: ICDE, pp. 38–38. IEEE (2006)
Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the curse of dimensionality. In: STOC, pp. 604–613. ACM (1998)
Li, C.Y., Hsu, C.T.: Image retrieval with relevance feedback based on graph-theoretic region correspondence estimation. IEEE Trans. Multimedia 10(3), 447–456 (2008)
Liu, X., He, J., Deng, C., Lang, B.: Collaborative hashing. In: IEEE CVPR, pp. 2147–2154. IEEE (2014)
Liu, X., He, J., Lang, B.: Reciprocal hash tables for nearest neighbor search. In: AAAI. AAAI Press (2013)
Lv, Q., Josephson, W., Wang, Z., Charikar, M., Li, K.: Multi-probelsh: efficient indexing for high-dimensional similarity search. In: VLDB, pp. 950–961. VLDB Endowment (2007)
Riesen, K., Bunke, H.: Iam graph database repository for graph basedpattern recognition and machine learning. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) SSPR & SPR 2008. LNCS, vol. 5342, pp. 287–297. Springer, Heidelberg (2008)
Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of bipartite graph matching. Image Vis. Comput. 27(7), 950–959 (2009)
Shervashidze, N., Borgwardt, K.M.: Fast subtree kernels on graphs. In: NIPS, pp. 1660–1668 (2009)
Tabei, Y., Tsuda, K.: Kernel-based similarity search in massive graph databases with wavelet trees. In: SDM, pp. 154–163. SIAM (2011)
Wang, G., Wang, B., Yang, X., Yu, G.: Efficiently indexing large sparse graphs for similarity search. IEEE Trans. Knowl. Data Eng. 24(3), 440–451 (2012)
Wang, X., Ding, X., Tung, A., Ying, S., Jin, H.: An efficient graph indexing method. In: ICDE, pp. 210–221. IEEE (2012)
Wang, Y., Xiao, J., Suzek, T.O., Zhang, J., Wang, J., Bryant, S.H.: Pubchem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res. 37(suppl 2), W623–W633 (2009)
Yan, X., Yu, P.S., Han, J.: Substructure similarity search in graph databases. In: ACM SIGMOD, pp. 766–777. ACM (2005)
Zeng, Z., Tung, A.K., Wang, J., Feng, J., Zhou, L.: Comparing stars: on approximating graph edit distance. VLDB 2(1), 25–36 (2009)
Acknowledgements
This work is supported in part by the National Natural Science Foundation of China (61370125 and 61402026), SKLSDE-2014ZX-07 and SKLSDE-2015ZX-04.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Zhang, B., Liu, X., Lang, B. (2015). Fast Graph Similarity Search via Locality Sensitive Hashing. In: Ho, YS., Sang, J., Ro, Y., Kim, J., Wu, F. (eds) Advances in Multimedia Information Processing -- PCM 2015. PCM 2015. Lecture Notes in Computer Science(), vol 9314. Springer, Cham. https://doi.org/10.1007/978-3-319-24075-6_60
Download citation
DOI: https://doi.org/10.1007/978-3-319-24075-6_60
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24074-9
Online ISBN: 978-3-319-24075-6
eBook Packages: Computer ScienceComputer Science (R0)