Abstract
This paper describes a medicinal products and active ingredients named entity recogniser (MaNER) for Spanish technical documents. This rule-based system uses high quality and low-maintenance lexicons. Our results (F-measure 90 %) proves that dictionary-based approaches, without any deep natural language processing (e.g. POS tagging), can achieve a high performance in this task. Our system obtains better results when compared to similar systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
AEMPS: NOMENCLATOR DE PRESCRIPCION. http://www.aemps.gob.es/cima/pestanias.do?metodo=nomenclator
Cimino, J.J.: Desiderata for controlled medical vocabularies in the twenty-first century. Meth. Inf. Med. - Author manuscript; available in PMC 2012 August 10 37(4—-5), 394–403 (1998)
Cruanes Vilas, J.: Una aproximación léxico-semántica para el mapeado automático de medicamentos y su aplicación al enriquecimiento de ontologías farmacoterapéuticas. Ph.D. thesis, Universida de Alicante (2014). http://hdl.handle.net/10045/42146
Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V., Aswani, N., Roberts, I., Gorrell, G., Funk, A., Roberts, A., Damljanovic, D., Heitz, T., Greenwood, M., Saggion, H., Petrak, J., Li, Y., Peters, W., Al, E.: Developing Language Processing Components with GATE Version 7 (A User Guide), vol. 8 (2012). http://gate.ac.uk
Deléger, L., Grouin, C., Zweigenbaum, P.: Extracting medical information from narrative patient records: the case of medication-related information. J. Am. Med. Inf. Assoc.: JAMIA 17(5), 555–558 (2010). doi:10.1136/jamia.2010.003962
Doan, S., Bastarache, L., Klimkowski, S., Denny, J.C., Xu, H.: Integrating existing natural language processing tools for medication extraction from discharge summaries. J. Am. Med. Inf. Assoc. 17(5), 528–531 (2010). doi:10.1136/jamia.2010.003855
Feldman, R., Sanger, J.: The Text Mining Handbook: Advanced Approaches in Analyzing Unstructured Data, 2009th edn. Cambridge University Press, New York (2009). doi:10.1017/CBO9780511546914
Friedman, C., Rindflesch, T.C., Corn, M.: Natural language processing: state of the art and prospects for significant progress, a workshop sponsored by the National Library of Medicine. J. Biomed. Inf. 46(5), 765–773 (2013). doi:10.1016/j.jbi.2013.06.004
González-González, A.I., Sánchez Mateos, J., Sanz Cuesta, T., Riesgo Fuertes, R., Escortell Mayor, E., Hernández Fernández, T.: Estudio de las necesidadesde información generadas por los médicos de atención primaria (proyecto ENIGMA)*. Atención primaria 38(4), 219–224 (2006). http://www.sciencedirect.com/science/article/pii/S0212656706704814
Hamon, T., Grabar, N.: Linguistic approach for identification of medication names and related information in clinical narratives. J. Am. Med. Inf. Assoc. 17(5), 549–554 (2010). doi:10.1136/jamia.2010.004036
Meystre, S.M., Thibault, J., Shen, S., Hurdle, J.F., South, B.R.: Textractor: a hybrid system for medications and reason for their prescription extraction from clinical text documents. J. Am. Med. Inf. Assoc. 17(5), 559–562 (2010). doi:10.1136/jamia.2010.004028
Moreno, I., Moreda, P., Romá-Ferri, M.: Reconocimiento de entidades nombradas en dominios restringidos. In: Actas del III Workshop en Tecnologías de la Informática, pp. 41–57. Alicante, Spain (2012)
Sanchez-Cisneros, D., Aparicio Gali, F.: UEM-UC3M: an ontology-based named entity recognition system for biomedical texts. In: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013), vol. 2, pp. 622–627 (2013). http://www.aclweb.org/anthology/S13-2104
Segura-Bedmar, I., Martnez, P., Herrero-Zazo, M.: SemEval-2013 task 9: extraction of drug-drug interactions from biomedical texts (DDIExtraction 2013). In: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013), vol. 2011 (2013). www.aclweb.org/anthology/S13-2056
Segura-Bedmar, I., Revert, R., Martínez, P.: Detecting drugs and adverse events from spanish health social media streams. In: Proceedings of the 5th International Workshop on Health Text Mining and Information Analysis (Louhi) @ EACL 2014, pp. 106–115 (2014). https://www.aclweb.org/anthology/W/W14/W14-1117.pdf
Tikk, D., Solt, I.: Improving textual medication extraction using combined conditional random fields and rule-based systems. J. Am. Med. Inf. Assoc. 17(5), 540–544 (2010). doi:10.1136/jamia.2010.004119
Uzuner, O., Solti, I., Cadag, E.: Extracting medication information from clinical text. J. Am. Med. Inf. Assoc. 17(5), 514–518 (2010). doi:10.1136/jamia.2010.003947
WHO collaborating center for drug statistics methodology: guidelines for ATC classification and DDD assignment (2015). http://www.whocc.no/atc_ddd_publications/guidelines/
Yang, H.: Automatic extraction of medication information from medical discharge summaries. J. Am. Med. Inf. Assoc. 17(5), 545–548 (2010). doi:10.1136/jamia.2010.003863
Acknowledgments
This paper has been partially supported by the Spanish Government (grant no. TIN2012-38536-C03-03 and TIN2012-31224)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Moreno, I., Moreda, P., Romá-Ferri, M.T. (2015). MaNER: A MedicAl Named Entity Recogniser. In: Biemann, C., Handschuh, S., Freitas, A., Meziane, F., Métais, E. (eds) Natural Language Processing and Information Systems. NLDB 2015. Lecture Notes in Computer Science(), vol 9103. Springer, Cham. https://doi.org/10.1007/978-3-319-19581-0_40
Download citation
DOI: https://doi.org/10.1007/978-3-319-19581-0_40
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-19580-3
Online ISBN: 978-3-319-19581-0
eBook Packages: Computer ScienceComputer Science (R0)