Abstract
Domain Generation Algorithm (DGA) has evolved as one of the most dangerous and “undetectable” digital security deception methods. The complexity of this approach (combined with the intricate function of the fast-flux “botnet” networks) is the cause of an extremely risky threat which is hard to trace. In most of the cases it should be faced as zero-day vulnerability. This kind of combined attacks is responsible for malware distribution and for the infection of Information Systems. Moreover it is related to illegal actions, like money mule recruitment sites, phishing websites, illicit online pharmacies, extreme or illegal adult content sites, malicious browser exploit sites and web traps for distributing virus. Traditional digital security mechanisms face such vulnerabilities in a conventional manner, they create often false alarms and they fail to forecast them. This paper proposes an innovative fast and accurate evolving Smart URL Filter (eSURLF) in a Zone-based Policy Firewall (ZFW) which uses evolving Spiking Neural Networks (eSNN) for detecting algorithmically generated malicious domains names.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
DGAs and Cyber-Criminals: A Case Study, Research Note. www.damballa.com
Yadav, S., Reddy, A.K.K., Reddy, A.L.N., Ranjan, S.: Detecting Algorithmically Generated Domain-Flux Attacks With DNS Traffic Analysis. ACM 20(5) (2012)
Perdisci, R., Corona, I., Giacinto, G.: Early Detection of Malicious Flux Networks via Large-Scale Passive DNS Traffic Analysis. By the IEEE Computer Society (2012)
Bilge, L., Kirda, E., Kruegel, C., Balduzzi, M.: EXPOSURE: Finding Malicious Domains Using Passive DNS Analysis. TISSEC 16(4), Article No. 14 A (2014)
Demertzis, K., Iliadis, L.: A hybrid network anomaly and intrusion detection approach based on evolving spiking neural network classification. In: Sideridis, A.B. (ed.) E-Democracy 2013. CCIS, vol. 441, pp. 11–23. Springer, Heidelberg (2014)
Demertzis, K., Iliadis, L.: Evolving computational intelligence system for malware detection. In: Iliadis, L., Papazoglou, M., Pohl, K. (eds.) CAiSE Workshops 2014. LNBIP, vol. 178, pp. 322–334. Springer, Heidelberg (2014)
Demertzis, K., Iliadis, L.: Bio-Inspired hybrid artificial intelligence framework for cyber security. In: Proceedings of the 2nd Conference on CryptAAF, Athens, Greece (2014)
Demertzis, K., Iliadis, L.: Bio-Inspired Hybrid Intelligent Method for Detecting Android Malware. In: Proceedings of the 9th KICSS Conference, Limassol, Cyprus (2014)
Gu, G., Porras, P., Yegneswaran, V., Fong, M., Lee W.: Bothunter: detecting malware infection through ids-driven dialog correlation. In: 16th USENIX, pp. 1--16 (2007)
Ma, J.: Beyond blacklist: learning to detect malicious website from suspicious URLs. In: SIGKDD Conference, Paris, France (2009)
McGrath, D.K., Gupta, M.: Behind phishing: an examination of phisher modi operandi. In: USENIX on Large-scale Exploits and Emergent Threats (LEET) (2008)
Xie, Y., Yu, F., Achan, K., Panigrahy, R., Hulten, G., Osipkov, I.: Spamming botnets: signatures and characteristics. ACM SIGCOMM Comp. Comm. Review (2008)
Stalmans, E.: A framework for DNS based detection and mitigation of malware infections on a network. In: Information Security South Africa Conference (2011)
Nhauo, D., Sung-Ryul, K.: Classification of malicious domain names using support vector machine and bi-gram method. J. of Security and its Applications 7(1) (2013)
Antonakakis, M., Perdisci, R., Nadji, Y., Vasiloglou, N., Abu, S., Lee, W., Dagon, D.: From Throw-Away Traffic to Bots: Detecting the Rise of DGA-Based Malware (2012)
Zhao, D., Traore, I., Sayed, B., Lu, W., Saad, S., Ghorbani, A.: Botnet detection based on traffic behavior analysis and flow intervals. J. Computer Security 39, 2–16 (2013)
Holz, T., Gorecki, C., Rieck, K., Freiling, F.: Measuring and detecting fast-flux service networks. In: Network & Distributed System Security Symposium, NDSS 2008 (2008)
Passerini, E., Paleari, R., Martignoni, L., Bruschi, D.: Fluxor: detecting and monitoring fast-flux service networks. In: DIMVA 2008 (2008)
Nazario, J., Holz, T.: As the net churns fast-flux botnet observations. In: MALWARE (2008)
Konte, M., Feamster, N., Jung, J.: Dynamics of online scam hosting infrastructure. In: Passive and Active Measurement Conference, PAM 2009 (2009)
Cisco Router and Security Device Manager 2.4 User’s Guide. www.cisco.com
Upton, G., Cook, I.: Understanding Statistics. Oxford University Press, p. 55 (1996)
Thorpe, S.J., Delorme, A., Rullen, R.: Spike-based strategies for rapid processing (2001)
Schliebs, S., Kasabov, N.: Evolving spiking neural network—a survey. Springer (2013)
Delorme, A., Perrinet, L., Thorpe, S.J.: Networks of Integrate-and-Fire Neurons using Rank Order Coding. Pub. in Neurocomputing 38-40(1-4), 539–545 (2000)
Thorpe, S.J., Gautrais, J.: Rank order coding. In: CNS 1997: 6th Conf. on Computational Neuroscience: Trends in Research, pp. 113–118. Plenum Pr. (1998)
Kasabov, N.: Evolving connectionist systems: Methods and Applications in Bioinformatics, Brain study and intelligent machines. Springer (2002)
Wysoski, S.G., Benuskova, L., Kasabov, N.: Adaptive learning procedure for a network of spiking neurons and visual pattern recognition. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2006. LNCS, vol. 4179, pp. 1133–1142. Springer, Heidelberg (2006)
Schliebs, S., Defoin-Platel, M., Kasabov, N.: Integrated feature and parameter optimization for an evolving spiking neural network. In: Köppen, M., Kasabov, N., Coghill, G. (eds.) ICONIP 2008, Part I. LNCS, vol. 5506, pp. 1229–1236. Springer, Heidelberg (2009)
Iliadis, L.: Intelligent Information Systems and applications in risk estimation. A. Stamoulis publication, Thessaloniki (2008) ISBN: 978-960-6741-33-3
Mirjalili, S., Hashim, S., Sardroudi, H.: Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm. Elsevier (2012)
Ferreira, C.: Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence, 2nd edn., Springer (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Demertzis, K., Iliadis, L. (2015). Evolving Smart URL Filter in a Zone-Based Policy Firewall for Detecting Algorithmically Generated Malicious Domains. In: Gammerman, A., Vovk, V., Papadopoulos, H. (eds) Statistical Learning and Data Sciences. SLDS 2015. Lecture Notes in Computer Science(), vol 9047. Springer, Cham. https://doi.org/10.1007/978-3-319-17091-6_17
Download citation
DOI: https://doi.org/10.1007/978-3-319-17091-6_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-17090-9
Online ISBN: 978-3-319-17091-6
eBook Packages: Computer ScienceComputer Science (R0)