Skip to main content

A Reputation-Enhanced Recommender System

  • Conference paper
Advanced Data Mining and Applications (ADMA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8933))

Included in the following conference series:

  • 3323 Accesses

Abstract

Reputation systems are employed to provide users with advice on the quality of items on the Web, based on the aggregated value of user-based ratings. Recommender systems are used online to suggest items to users according to the users, expressed preferences. Yet, recommender systems will endorse an item regardless of its reputation value. In this paper, we report the incorporation of reputation models into recommender systems to enhance the accuracy of recommendations. The proposed method separates the implementation of recommender and reputation systems for generality. Our experiment showed that the proposed method could enhance the accuracy of existing recommender systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zhou, X., Xu, Y., Li, Y., Josang, A., Cox, C.: The state-of-the-art in personalized recommender systems for social networking. Artificial Intelligence Review 37(2), 119–132 (2012)

    Article  Google Scholar 

  2. Jøsang, A., Guo, G., Pini, M.S., Santini, F., Xu, Y.: Combining recommender and reputation systems to produce better online advice. In: Torra, V., Narukawa, Y., Navarro-Arribas, G., Megías, D. (eds.) MDAI 2013. LNCS, vol. 8234, pp. 126–138. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  3. Papagelis, M., Plexousakis, D., Kutsuras, T.: Alleviating the sparsity problem of collaborative filtering using trust inferences. In: Herrmann, P., Issarny, V., Shiu, S.C.K. (eds.) iTrust 2005. LNCS, vol. 3477, pp. 224–239. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Analysis of recommendation algorithms for e-commerce. In: Proceedings of the 2nd ACM Conference on Electronic Commerce, pp. 158–167 (2000)

    Google Scholar 

  5. Liang, H., Xu, Y., Li, Y., Nayak, R., Tao, X.: Connecting users and items with weighted tags for personalized item recommendations. In: Proceedings of the 21st ACM Conference on Hypertext and Hypermedia, pp. 51–60 (2010)

    Google Scholar 

  6. Riggs, T., Wilensky, R.: An Algorithm For Automated Rating Of Reviewers. In: Proceedings of the First ACM/IEEE-CS Joint Conference on Digital Libraries, pp. 381–387 (2001)

    Google Scholar 

  7. Ayday, E., Lee, H., Fekri, F.: An Iterative Algorithm For Trust And Reputation Management. In: Proceedings of the International Symposium on Information Theory, pp. 2051–2055 (2009)

    Google Scholar 

  8. Jøsang, A., Haller, J.: Dirichlet Reputation Systems. Proceedings of the Second International. In: Proceedings of Conference on Availability, Reliability and Security, pp. 112–119 (2007)

    Google Scholar 

  9. Resnick, P., Varian, H.R.: Recommender systems. Community of ACM 40(1997), 56–58 (1997)

    Article  Google Scholar 

  10. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: GroupLens: an open architecture for collaborative filtering of net-news. In: Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work, pp. 175–186 (1994)

    Google Scholar 

  11. Abdullah, N.: Integrating collaborative filtering and matching-based search for product recommendation, Doctor of Philosophy, Faculty of Science and Technology, Queensland University of Technology, QUT ePrints (2012)

    Google Scholar 

  12. Shepitsen, A., Gemmell, J., Mobasher, B., Burke, R.: Personalized recommendation in social tagging systems using hierarchical clustering. In: Proceedings of the 2008 ACM Conference on Recommender Systems, pp. 259–266 (2008)

    Google Scholar 

  13. Marlin, B., Zemel, R.S.: The multiple multiplicative factor model for collaborative filtering. In: Proceedings of the Twenty-First International Conference on Machine Learning, pp. 73–81 (2004)

    Google Scholar 

  14. Shani, G., Heckerman, D., Brafman, R.I.: An MDP-based recommender system. Journal of Machine Learning Research 6(2006), 453–460 (2006)

    Google Scholar 

  15. Salakhutdinov, R., Mnih, A., Hinton, G.: Restricted Boltzmann machines for collaborative filtering. In: Proceedings of the 24th International Conference on Machine Learning, pp. 791–798 (2007)

    Google Scholar 

  16. Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 426–434 (2008)

    Google Scholar 

  17. Ku, Y.-C., Tai, Y.-M.: What Happens When Recommendation System Meets Reputation System? The Impact of Recommendation Information on Purchase Intention. In: International Conference on System Sciences (HICSS), pp. 1376–1383 (2013)

    Google Scholar 

  18. Jøsang, A.: A logic for uncertain probabilities. International Journal of Uncertainty. Fuzziness and Knowledge-Based Systems 9(2001), 279–311 (2001)

    Article  MathSciNet  Google Scholar 

  19. Dummett, M.: The Borda count and agenda manipulation. Social Choice and Welfare 15(2), 289–296 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Abdel-Hafez, A., Xu, Y., Jøsang, A.: A normal-distribution based reputation model. In: Eckert, C., Katsikas, S.K., Pernul, G. (eds.) TrustBus 2014. LNCS, vol. 8647, pp. 144–155. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  21. Abdel-Hafez, A., Xu, Y., Jøsang, A.: A rating aggregation method for generating product reputations. In: Proceedings of the 25th ACM Conference on Hypertext and Social Media, pp. 291–293 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Abdel-Hafez, A., Tang, X., Tian, N., Xu, Y. (2014). A Reputation-Enhanced Recommender System. In: Luo, X., Yu, J.X., Li, Z. (eds) Advanced Data Mining and Applications. ADMA 2014. Lecture Notes in Computer Science(), vol 8933. Springer, Cham. https://doi.org/10.1007/978-3-319-14717-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14717-8_15

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14716-1

  • Online ISBN: 978-3-319-14717-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics