Skip to main content

Constructing Hyper-Bent Functions from Boolean Functions with the Walsh Spectrum Taking the Same Value Twice

  • Conference paper
  • First Online:
Sequences and Their Applications - SETA 2014 (SETA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8865))

Included in the following conference series:

  • 775 Accesses

Abstract

Hyper-bent functions as a subclass of bent functions attract much interest and it is elusive to completely characterize hyper-bent functions. Most of known hyper-bent functions are Boolean functions with Dillon exponents and they are often characterized by special values of Kloosterman sums. In this paper, we present a method for characterizing hyper-bent functions with Dillon exponents. A class of hyper-bent functions with Dillon exponents over \(\mathbb {F}_{2^{2m}}\) can be characterized by a Boolean function over \(\mathbb {F}_{2^m}\), whose Walsh spectrum takes the same value twice. Further, we show several classes of hyper-bent functions with Dillon exponents characterized by Kloosterman sum identities and the Walsh spectra of some common Boolean functions.

Y. Qi – Part of this work was done when he was a postdoctor in Peking University and Aisino Corporation Inc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Carlitz, L.: Explicit evaluation of certain exponential sums. Math. Scand. 44, 5–16 (1979)

    MATH  MathSciNet  Google Scholar 

  2. Carlet, C.: Boolean functions for cryptography and error correcting codes. In: Crama, Y., Hammer, P.L. (eds.) Chapter of the Monography Boolean Models and Method in Mathematics, Computer Science, and Engineering, pp. 257–397. Cambridge University Press, Cambridge (2010)

    Chapter  Google Scholar 

  3. Carlet, C., Gaborit, P.: Hyperbent functions and cyclic codes. J Combin. Theory Ser. A 113(3), 466–482 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Charpin, P., Gong, G.: Hyperbent functions, Kloosterman sums and Dickson polynomials. IEEE Trans. Inf. Theory 9(54), 4230–4238 (2008)

    Article  MathSciNet  Google Scholar 

  5. Charpin, P., Kyureghyan, G.: Cubic monomial bent functions: a subclass of \(\cal {M}\). SIAM J. Discr. Math. 22(2), 650–665 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cao, X., Hollmann, H.D.L., Xiang, Q.: New Kloosterman sum identities and equalities over finite fields. Finite Fields Appl. 14, 823–833 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dillon, J.: Elementary Hadamard difference sets. Ph.D., University of Maryland (1974)

    Google Scholar 

  8. Dobbertin, H., Leander, G.: A survey of some recent results on bent functions. In: Helleseth, T., Sarwate, D., Song, H.-Y., Yang, K. (eds.) SETA 2004. LNCS, vol. 3486, pp. 1–29. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Dobbertin, H., Leander, G., Canteaut, A., Carlet, C., Felke, P., Gaborit, P.: Construction of bent functions via Niho power functions. J. Combin. Theory Ser. A 113, 779–798 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Flori, J.P., Mesnager, S.: An efficient characterization of a family of hyper-bent functions with multiple trace terms. J. Math. Crypt. 7(1), 43–68 (2013)

    MATH  MathSciNet  Google Scholar 

  11. Flori, J.-P., Mesnager, S.: Dickson polynomials, hyperelliptic curves and hyper-bent functions. In: Helleseth, T., Jedwab, J. (eds.) SETA 2012. LNCS, vol. 7280, pp. 40–52. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  12. Gold, R.: Maximal recursive sequences with 3-valued recursive crosscorrelation functions. IEEE Trans. Inf. Theory 14(1), 154–156 (1968)

    Article  MATH  Google Scholar 

  13. Gong, G., Golomb, S.W.: Transform domain analysis of DES. IEEE Trans. Inf. Theory 45(6), 2065–2073 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Leander, G.: Monomial bent functions. IEEE Trans. Inf. Theory 2(52), 738–743 (2006)

    Article  MathSciNet  Google Scholar 

  15. Lisonek, P.: An efficient characterization of a family of hyperbent functions. IEEE Trans. Inf. Theory 57(9), 6010–6014 (2011)

    Article  MathSciNet  Google Scholar 

  16. Li, N., Helleseth, T., Tang, X., Kholosha, A.: Several new classes of bent functions from Dillon exponents. IEEE Trans. Inf. Theory 59(3), 1818–1831 (2013)

    Article  MathSciNet  Google Scholar 

  17. Mesnager, S.: A new class of bent and hyper-bent Boolean functions in polynomial forms. Des. Codes Crypt. 59(1–3), 265–279 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Mesnager, S.: Bent and hyper-bent functions in polynomial form and their link with some exponential sums and Dickson polynomials. IEEE Trans. Inf. Theory 57(9), 5996–6009 (2011)

    Article  MathSciNet  Google Scholar 

  19. Mesnager, S.: Hyper-bent Boolean functions with multiple trace terms. In: Hasan, M.A., Helleseth, T. (eds.) WAIFI 2010. LNCS, vol. 6087, pp. 97–113. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  20. Mesnager, S.: A new family of hyper-bent Boolean functions in polynomial form. In: Parker, M.G. (ed.) Cryptography and Coding 2009. LNCS, vol. 5921, pp. 402–417. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  21. Mesnager, S., Flori, J.P.: Hyper-bent functions via Dillon-like exponents. IEEE Trans. Inf. Theory. 59(5), 3215–3232 (2013)

    Article  MathSciNet  Google Scholar 

  22. Rothaus, O.S.: On bent functions. J. Combin. Theory Ser. A 20, 300–305 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  23. Wang, B., Tang, C., Qi, Y., Yang, Y.: A generalization of the class of hyper-bent Boolean functions in binomial forms. Cryptology ePrint Archive, Report 2011/698 (2011). http://eprint.iacr.org/

  24. Wang, B., Tang, C., Qi, Y., Yang, Y., Xu, M.: A new class of hyper-bent Boolean functions in binomial forms. CoRR, abs/1112.0062 (2011)

    Google Scholar 

  25. Wang, B., Tang, C., Qi, Y., Yang, Y., Xu, M.: A new class of hyper-bent Boolean functions with multiple trace terms. Cryptology ePrint Archive, Report 2011/600 (2011). http://eprint.iacr.org/

  26. Youssef, A.M., Gong, G.: Hyper-bent functions. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 406–419. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (Grant No.10990011, 11401480 & No. 61272499).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanfeng Qi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Tang, C., Qi, Y. (2014). Constructing Hyper-Bent Functions from Boolean Functions with the Walsh Spectrum Taking the Same Value Twice. In: Schmidt, KU., Winterhof, A. (eds) Sequences and Their Applications - SETA 2014. SETA 2014. Lecture Notes in Computer Science(), vol 8865. Springer, Cham. https://doi.org/10.1007/978-3-319-12325-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12325-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12324-0

  • Online ISBN: 978-3-319-12325-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics