Abstract
Hyper-bent functions as a subclass of bent functions attract much interest and it is elusive to completely characterize hyper-bent functions. Most of known hyper-bent functions are Boolean functions with Dillon exponents and they are often characterized by special values of Kloosterman sums. In this paper, we present a method for characterizing hyper-bent functions with Dillon exponents. A class of hyper-bent functions with Dillon exponents over \(\mathbb {F}_{2^{2m}}\) can be characterized by a Boolean function over \(\mathbb {F}_{2^m}\), whose Walsh spectrum takes the same value twice. Further, we show several classes of hyper-bent functions with Dillon exponents characterized by Kloosterman sum identities and the Walsh spectra of some common Boolean functions.
Y. Qi – Part of this work was done when he was a postdoctor in Peking University and Aisino Corporation Inc.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Carlitz, L.: Explicit evaluation of certain exponential sums. Math. Scand. 44, 5–16 (1979)
Carlet, C.: Boolean functions for cryptography and error correcting codes. In: Crama, Y., Hammer, P.L. (eds.) Chapter of the Monography Boolean Models and Method in Mathematics, Computer Science, and Engineering, pp. 257–397. Cambridge University Press, Cambridge (2010)
Carlet, C., Gaborit, P.: Hyperbent functions and cyclic codes. J Combin. Theory Ser. A 113(3), 466–482 (2006)
Charpin, P., Gong, G.: Hyperbent functions, Kloosterman sums and Dickson polynomials. IEEE Trans. Inf. Theory 9(54), 4230–4238 (2008)
Charpin, P., Kyureghyan, G.: Cubic monomial bent functions: a subclass of \(\cal {M}\). SIAM J. Discr. Math. 22(2), 650–665 (2008)
Cao, X., Hollmann, H.D.L., Xiang, Q.: New Kloosterman sum identities and equalities over finite fields. Finite Fields Appl. 14, 823–833 (2008)
Dillon, J.: Elementary Hadamard difference sets. Ph.D., University of Maryland (1974)
Dobbertin, H., Leander, G.: A survey of some recent results on bent functions. In: Helleseth, T., Sarwate, D., Song, H.-Y., Yang, K. (eds.) SETA 2004. LNCS, vol. 3486, pp. 1–29. Springer, Heidelberg (2005)
Dobbertin, H., Leander, G., Canteaut, A., Carlet, C., Felke, P., Gaborit, P.: Construction of bent functions via Niho power functions. J. Combin. Theory Ser. A 113, 779–798 (2006)
Flori, J.P., Mesnager, S.: An efficient characterization of a family of hyper-bent functions with multiple trace terms. J. Math. Crypt. 7(1), 43–68 (2013)
Flori, J.-P., Mesnager, S.: Dickson polynomials, hyperelliptic curves and hyper-bent functions. In: Helleseth, T., Jedwab, J. (eds.) SETA 2012. LNCS, vol. 7280, pp. 40–52. Springer, Heidelberg (2012)
Gold, R.: Maximal recursive sequences with 3-valued recursive crosscorrelation functions. IEEE Trans. Inf. Theory 14(1), 154–156 (1968)
Gong, G., Golomb, S.W.: Transform domain analysis of DES. IEEE Trans. Inf. Theory 45(6), 2065–2073 (1999)
Leander, G.: Monomial bent functions. IEEE Trans. Inf. Theory 2(52), 738–743 (2006)
Lisonek, P.: An efficient characterization of a family of hyperbent functions. IEEE Trans. Inf. Theory 57(9), 6010–6014 (2011)
Li, N., Helleseth, T., Tang, X., Kholosha, A.: Several new classes of bent functions from Dillon exponents. IEEE Trans. Inf. Theory 59(3), 1818–1831 (2013)
Mesnager, S.: A new class of bent and hyper-bent Boolean functions in polynomial forms. Des. Codes Crypt. 59(1–3), 265–279 (2011)
Mesnager, S.: Bent and hyper-bent functions in polynomial form and their link with some exponential sums and Dickson polynomials. IEEE Trans. Inf. Theory 57(9), 5996–6009 (2011)
Mesnager, S.: Hyper-bent Boolean functions with multiple trace terms. In: Hasan, M.A., Helleseth, T. (eds.) WAIFI 2010. LNCS, vol. 6087, pp. 97–113. Springer, Heidelberg (2010)
Mesnager, S.: A new family of hyper-bent Boolean functions in polynomial form. In: Parker, M.G. (ed.) Cryptography and Coding 2009. LNCS, vol. 5921, pp. 402–417. Springer, Heidelberg (2009)
Mesnager, S., Flori, J.P.: Hyper-bent functions via Dillon-like exponents. IEEE Trans. Inf. Theory. 59(5), 3215–3232 (2013)
Rothaus, O.S.: On bent functions. J. Combin. Theory Ser. A 20, 300–305 (1976)
Wang, B., Tang, C., Qi, Y., Yang, Y.: A generalization of the class of hyper-bent Boolean functions in binomial forms. Cryptology ePrint Archive, Report 2011/698 (2011). http://eprint.iacr.org/
Wang, B., Tang, C., Qi, Y., Yang, Y., Xu, M.: A new class of hyper-bent Boolean functions in binomial forms. CoRR, abs/1112.0062 (2011)
Wang, B., Tang, C., Qi, Y., Yang, Y., Xu, M.: A new class of hyper-bent Boolean functions with multiple trace terms. Cryptology ePrint Archive, Report 2011/600 (2011). http://eprint.iacr.org/
Youssef, A.M., Gong, G.: Hyper-bent functions. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 406–419. Springer, Heidelberg (2001)
Acknowledgements
This work was supported by the Natural Science Foundation of China (Grant No.10990011, 11401480 & No. 61272499).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Tang, C., Qi, Y. (2014). Constructing Hyper-Bent Functions from Boolean Functions with the Walsh Spectrum Taking the Same Value Twice. In: Schmidt, KU., Winterhof, A. (eds) Sequences and Their Applications - SETA 2014. SETA 2014. Lecture Notes in Computer Science(), vol 8865. Springer, Cham. https://doi.org/10.1007/978-3-319-12325-7_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-12325-7_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-12324-0
Online ISBN: 978-3-319-12325-7
eBook Packages: Computer ScienceComputer Science (R0)