Skip to main content

Analogical Classification: Handling Numerical Data

  • Conference paper
Scalable Uncertainty Management (SUM 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8720))

Included in the following conference series:

Abstract

The formal modeling of analogical proportions (i.e., statements of the form “a is to b as c is to d”) has led in the last past years to different proposals for classification algorithms, which have been quite successful on benchmarks where data are described by binary or nominal features. As far as we know and up to one exception, numerical data have never been considered. We propose here a new algorithm for handling numerical data. Starting from multiple-valued logical modelings of analogical proportions, more or less strongly encoding the idea that the change from a to b is the same as the change from c to d, we investigate different implementations leading to very good results on classical benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bayoudh, S., Miclet, L., Delhay, A.: Learning by analogy: A classification rule for binary and nominal data. In: Proc. Inter. Join. Conf. on Artificial Intelligence, IJCAI 2007, pp. 678–683 (2007)

    Google Scholar 

  2. Boughanem, M., Loiseau, Y., Prade, H.: Refining aggregation functions for improving document ranking in information retrieval. In: Prade, H., Subrahmanian, V.S. (eds.) SUM 2007. LNCS (LNAI), vol. 4772, pp. 255–267. Springer, Heidelberg (2007)

    Google Scholar 

  3. Bounhas, M., Prade, H., Richard, G.: Analogical classification: A new way to deal with examples. Tech. Rep. RR–2014-03–FR, Institut de Recherche en Informatique de Toulouse (IRIT), March, to appear in Proc. 21st Europ. Conf. on Artificial Intelligence, Prague, August 18-22 (2014)

    Google Scholar 

  4. Bounhas, M., Prade, H., Richard, G.: Analogical classification: A rule-based view. In: Laurent, A., Strauss, O., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2014, Part II. CCIS, vol. 443, pp. 485–495. Springer, Heidelberg (2014)

    Google Scholar 

  5. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7, 1–30 (2006)

    MATH  MathSciNet  Google Scholar 

  6. Dubois, D., Prade, H., Richard, G.: Multiple-valued extensions of analogical proportions - A discussion (submitted)

    Google Scholar 

  7. Gentner, D., Holyoak, K.J., Kokinov, B.N.: The Analogical Mind: Perspectives from Cognitive Science. Cognitive Science, and Philosophy. MIT Press, Cambridge (2001)

    Google Scholar 

  8. Helman, D.H. (ed.): Analogical Reasoning: Perspectives of Artificial Intelligence. Cognitive Science, and Philosophy. Kluwer, Dordrecht (1988)

    MATH  Google Scholar 

  9. Lepage, Y.: Analogy and formal languages. Electr. Notes Theor. Comput. Sci. 53 (2001)

    Google Scholar 

  10. Mertz, J., Murphy, P.: UCI repository of machine learning databases (2000), ftp://ftp.ics.uci.edu/pub/machine-learning-databases

  11. Miclet, L., Bayoudh, S., Delhay, A.: Analogical dissimilarity: definition, algorithms and two experiments in machine learning. JAIR 32, 793–824 (2008)

    MATH  MathSciNet  Google Scholar 

  12. Miclet, L., Prade, H.: Handling analogical proportions in classical logic and fuzzy logics settings. In: Sossai, C., Chemello, G. (eds.) ECSQARU 2009. LNCS, vol. 5590, pp. 638–650. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Moraes, R.M., Machado, L.S., Prade, H., Richard, G.: Classification based on homogeneous logical proportions. In: Bramer, M., Petridis, M. (eds.) Proc. of AI-2013, The Thirty-third SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence, Cambridge, England, UK, pp. 53–60. Springer, Heidelberg (2013)

    Google Scholar 

  14. Prade, H., Richard, G.: Reasoning with logical proportions. In: Lin, F.Z., Sattler, U., Truszczynski, M. (eds.) Proc. 12th Int. Conf. on Principles of Knowledge Representation and Reasoning, KR 2010, Toronto, May 9-13, pp. 545–555. AAAI Press (2010)

    Google Scholar 

  15. Prade, H., Richard, G.: Analogical proportions and multiple-valued logics. In: van der Gaag, L.C. (ed.) ECSQARU 2013. LNCS, vol. 7958, pp. 497–509. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  16. Prade, H., Richard, G.: Homogeneous logical proportions: Their uniqueness and their role in similarity-based prediction. In: Brewka, G., Eiter, T., McIlraith, S.A. (eds.) Proc. 13th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 2012), Roma, June 10-14, pp. 402–412. AAAI Press (2012)

    Google Scholar 

  17. Prade, H., Richard, G.: From analogical proportion to logical proportions. Logica Universalis 7(4), 441–505 (2013)

    Article  MathSciNet  Google Scholar 

  18. Prade, H., Richard, G. (eds.): Computational Approaches to Analogical Reasoning: Current Trends. SCI, vol. 548. Springer, Heidelberg (2014)

    Google Scholar 

  19. Prade, H., Richard, G.: Multiple-valued logic interpretations of analogical, reverse analogical, and paralogical proportions. In: Proc. 40th IEEE Int. Symp. on Multiple-Valued Logic (ISMVL 2010), Barcelona, pp. 258–263 (2010)

    Google Scholar 

  20. Prade, H., Richard, G., Yao, B.: Enforcing regularity by means of analogy-related proportions-a new approach to classification. International Journal of Computer Information Systems and Industrial Management Applications 4, 648–658 (2012)

    Google Scholar 

  21. Stroppa, N., Yvon, F.: An analogical learner for morphological analysis. In: Online Proc. 9th Conf. Comput. Natural Language Learning (CoNLL 2005), pp. 120–127 (2005)

    Google Scholar 

  22. Stroppa, N., Yvon, F.: Analogical learning and formal proportions: Definitions and methodological issues. Tech. rep. (June 2005)

    Google Scholar 

  23. Yvon, F., Stroppa, N., Delhay, A., Miclet, L.: Solving analogical equations on words. Tech. rep., Ecole Nationale Supérieure des Télécommunications (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Bounhas, M., Prade, H., Richard, G. (2014). Analogical Classification: Handling Numerical Data. In: Straccia, U., Calì, A. (eds) Scalable Uncertainty Management. SUM 2014. Lecture Notes in Computer Science(), vol 8720. Springer, Cham. https://doi.org/10.1007/978-3-319-11508-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11508-5_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11507-8

  • Online ISBN: 978-3-319-11508-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics