Abstract
When building probabilistic relational models it is often difficult to determine what formulae or factors to include in a model. Different models make quite different predictions about how probabilities are affected by population size. We show some general patterns that hold in some classes of models for all numerical parametrizations. Given a data set, it is often easy to plot the dependence of probabilities on population size, which, together with prior knowledge, can be used to rule out classes of models, where just assessing or fitting numerical parameters will be misleading. In this paper we analyze the dependence on population for relational undirected models (in particular Markov logic networks) and relational directed models (for relational logistic regression). Finally we show how probabilities for real data sets depend on the population size.
Parts of this paper appeared in the UAI-2012 StarAI workshop [6].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Buntine, W.L.: Operations for learning with graphical models. arXiv preprint cs/9412102 (1994)
Domingos, P., Kok, S., Lowd, D., Poon, H., Richardson, M., Singla, P.: Markov logic. In: De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S.H. (eds.) Probabilistic ILP. LNCS (LNAI), vol. 4911, pp. 92–117. Springer, Heidelberg (2008)
Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning probabilistic relational models. In: Proc. IJCAI 1999, pp. 1300–1309 (1999)
Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning. MIT Press, Cambridge (2007)
Horsch, M., Poole, D.: A dynamic approach to probabilistic inference using Bayesian networks. In: Proc. Sixth Conference on Uncertainty in AI, pp. 155–161 (1990)
Jaeger, M.: Convergence results for relational Bayesian networks. In: Proceedings of LICS 1998 (1998)
Jain, D., Barthels, A., Beetz, M.: Adaptive Markov logic networks: Learning statistical relational models with dynamic parameters. In: 9th European Conference on Artificial Intelligence (ECAI), pp. 937–942 (2010)
Jain, D., Kirchlechner, B., Beetz, M.: Extending markov logic to model probability distributions in relational domains. In: Hertzberg, J., Beetz, M., Englert, R. (eds.) KI 2007. LNCS (LNAI), vol. 4667, pp. 129–143. Springer, Heidelberg (2007)
Kazemi, S.M., Buchman, D., Kersting, K., Natarajan, S., Poole, D.: Relational logistic regression. In: Proc. 14th International Conference on Principles of Knowledge Representation and Reasoning (KR 2014) (2014)
Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press, Cambridge (2009)
Natarajan, S., Khot, T., Lowd, D., Tadepalli, P., Kersting, K., Shavlik, J.: Exploiting causal independence in Markov logic networks: Combining undirected and directed models. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010, Part II. LNCS, vol. 6322, pp. 434–450. Springer, Heidelberg (2010)
Neville, J., Simsek, O., Jensen, D., Komoroske, J., Palmer, K., Goldberg, H.: Using relational knowledge discovery to prevent securities fraud. In: Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM Press (2005)
Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible inference. Morgan Kaufmann, San Mateo (1988)
Perlich, C., Provost, F.: Distribution-based aggregation for relational learning with identifier attributes. Machine Learning 62(1-2), 65–105 (2006)
Poole, D.: First-order probabilistic inference. In: Proceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI 2003), Acapulco, pp. 985–991 (2003)
Poole, D., Buchman, D., Natarajan, S., Kersting, K.: Aggregation and population growth: The relational logistic regression and Markov logic cases. In: UAI 2012 Workshop on Statistical Relational AI (2012)
De Raedt, L., Kersting, K.: Probabilistic Inductive Logic Programming: Theory and Applications. In: De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S.H. (eds.) Probabilistic Inductive Logic Programming. LNCS (LNAI), vol. 4911, pp. 1–27. Springer, Heidelberg (2008)
Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 42, 107–136 (2006)
de Salvo Braz, R., Amir, E., Roth, D.: Lifted first-order probabilistic inference. In: Getoor, L., Taskar, B. (eds.) Introduction to Statistical Relational Learning. MIT Press (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Poole, D., Buchman, D., Kazemi, S.M., Kersting, K., Natarajan, S. (2014). Population Size Extrapolation in Relational Probabilistic Modelling. In: Straccia, U., Calì, A. (eds) Scalable Uncertainty Management. SUM 2014. Lecture Notes in Computer Science(), vol 8720. Springer, Cham. https://doi.org/10.1007/978-3-319-11508-5_25
Download citation
DOI: https://doi.org/10.1007/978-3-319-11508-5_25
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-11507-8
Online ISBN: 978-3-319-11508-5
eBook Packages: Computer ScienceComputer Science (R0)