Skip to main content

Possibilistic Networks: A New Setting for Modeling Preferences

  • Conference paper
Scalable Uncertainty Management (SUM 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8720))

Included in the following conference series:

  • 581 Accesses

Abstract

Possibilistic networks are the counterpart of Bayesian networks in the possibilistic setting. Possibilistic networks have only been studied and developed from a reasoning-under-uncertainty point of view until now. In this short note, for the first time, one advocates their interest in preference modeling. Beyond their graphical appeal, they can be shown to provide a natural encoding of preferences agreeing with the inclusion-based partial order applied to the subsets of preferences violated in the different situations. Moreover they do not encounter the limitations of CP-Nets in terms of representation capabilities. They also enjoy a logical counterpart that may be used for consistency checking. This short note provides a comparative discussion of the merits of possibilistic networks with respect to other existing preference modeling frameworks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ben Amor, N., Benferhat, S.: Graphoid properties of qualitative possibilistic independence relations. Int. J. of Uncertainty, Fuzziness and Knowledge-based Sys. 13(1), 59–96 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ben Amor, N., Benferhat, S., Mellouli, K.: Anytime propagation algorithm for min-based possibilistic graphs. Soft Computing 8(2), 150–161 (2003)

    Article  Google Scholar 

  3. Benferhat, S., Dubois, D., Garcia, L., Prade, H.: On the transformation between possibilistic logic bases and possibilistic causal networks. Int. J. of Approximate Reasoning 29(2), 135–173 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bienvenu, M., Lang, J., Wilson, N.: From preference logics to preference languages, and back. In: Lin, F., Sattler, U., Truszczynski, M. (eds.) Proc. KR 2010, Toronto (2010)

    Google Scholar 

  5. Brafman, R.I., Domshlak, C.: Introducing variable importance tradeoffs into CP-nets. In: Darwiche, A., Friedman, N. (eds.) Proc.UAI 2002, Alberta, pp. 69–76 (2002)

    Google Scholar 

  6. Boutilier, C., et al.: CP-nets: A tool for representing and reasoning with conditional ceteris paribus preference statements. JAIR 21, 135–191 (2004)

    MATH  MathSciNet  Google Scholar 

  7. Domshlak, C., Hüllermeier, E., Kaci, S., Prade, H.: Preferences in AI: An overview. Artif. Intell. 175(7-8), 1037–1052 (2011)

    Article  Google Scholar 

  8. Dubois, D., Kaci, S., Prade, H.: Approximation of conditional preferences networks “CP-nets” in possibilistic logic. In: Proc. FUZZ-IEEE 2006, Vancouver, pp. 16–21 (2006)

    Google Scholar 

  9. Dubois, D., Prade, H.: Possibility Theory: An Approach to Computerized Processing of Uncertainty. Plenum Press (1988)

    Google Scholar 

  10. Dubois, D., Prade, H.: Qualitative possibility theory in information processing. In: Nikravesh, M., Kacprzyk, J., Zadeh, L.A. (eds.) Forging New Frontiers: Fuzzy Pioneers II. STUDFUZZ, vol. 218, pp. 53–83. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Dubois, D., Prade, H., Touazi, F.: Conditional Preference-nets, possibilistic logic, and the transitivity of priorities. In: Bramer, M., Petridis, M. (eds.) Research and Development in Intelligent Systems XXX, pp. 175–184 (2013)

    Google Scholar 

  12. Kaci, S., Prade, H.: Mastering the processing of preferences by using symbolic priorities in possibilistic logic. In: Ghallab, M., Spyropoulos, C.D., Fakotakis, N., Avouris, N.M. (eds.) Proc. ECAI 2008, Patras, pp. 376–380. IOS Press (2008)

    Google Scholar 

  13. Kaci, S., van der Torre, L.: Reasoning with various kinds of preferences: logic, non-monotonicity, and algorithms. Annals of Operations Research 163(1), 89–114 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers Inc., San Francisco (1988)

    Google Scholar 

  15. Wilson, N.: Computational techniques for a simple theory of conditional preferences. Artif. Intell. 175(7-8), 1053–1091 (2011)

    Article  MATH  Google Scholar 

  16. Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets & Sys. 1, 3–28 (1978)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

BenAmor, N., Dubois, D., Gouider, H., Prade, H. (2014). Possibilistic Networks: A New Setting for Modeling Preferences. In: Straccia, U., Calì, A. (eds) Scalable Uncertainty Management. SUM 2014. Lecture Notes in Computer Science(), vol 8720. Springer, Cham. https://doi.org/10.1007/978-3-319-11508-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11508-5_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11507-8

  • Online ISBN: 978-3-319-11508-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics