Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8641))

  • 1421 Accesses

Abstract

This paper is motivated by the problem of subdividing a prismatic mesh to a tetrahedral mesh with prescribed boundary conditions and without inserting Steiner points. We show that this 3D subdivision problem can be modeled as a 2D cutting flow problem. Then we propose a complete solution to the cutting flow problem, covering all possible combinations of base domain topology and boundary condition. We not only provide provable sufficient and necessary conditions for existence of solutions, but also provide linear algorithms to compute a solution whenever there is one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Albertelli, G., Crawfis, R.A.: Efficient subdivision of finite-element datasets into consistent tetrahedra. In: Proceedings of the 8th Conference on Visualization, VIS 1997, pp. 213–219. IEEE Computer Society Press, Los Alamitos (1997)

    Google Scholar 

  2. Au, P., Dompierre, J., Labbé, P., Guibault, F., Camarero, R.: Proposal of benchmarks for 3D unstructured tetrahedral mesh optimization. In: Proceedings of the 7th International Meshing, pp. 459–478 (1998)

    Google Scholar 

  3. Connell, S.D., Braaten, M.E.: Semi-structured mesh generation for 3d Navier-Stokes calculations. In: AIAA 12th Computational Fluid Dynamics Conference, pp. 369–380 (1995)

    Google Scholar 

  4. Dompierre, J., Labbé, P., Vallet, M.-G., Camarero, R.: How to subdivide pyramids, prisms, and hexahedra into tetrahedra. In: 8th International Meshing Roundtable, pp. 195–204 (1999)

    Google Scholar 

  5. Freitag, L.A., Ollivier-Gooch, C.: Tetrahedral mesh improvement using swapping and smoothing. International Journal for Numerical Methods in Engineering 40(21), 3979–4002 (1998)

    Article  MathSciNet  Google Scholar 

  6. Jiao, X.: Face offsetting: A unified approach for explicit moving interfaces. J. Comput. Phys. 220, 612–625 (2006)

    Article  Google Scholar 

  7. Loehner, R.: Matching semi-structured and unstructured grids for Navier-Stokes calculations. In: AIAA 11th Computational Fluid Dynamics Conference, pp. 555–564 (1993)

    Google Scholar 

  8. Longest, W., Kleinstreuer, C.: Comparison of blood particle deposition models for non-parallel flow domains. Journal of Biomechanics 36(3), 421–430 (2003)

    Article  Google Scholar 

  9. Max, N., Becker, B., Crawfis, R.: Flow volumes for interactive vector field visualization. In: Proceedings of the 4th Conference on Visualization, VIS 1993, pp. 19–24. IEEE Computer Society, Washington, DC (1993)

    Google Scholar 

  10. N’dri, D., Garon, A., Fortin, A.: A new stable space-time formulation for two-dimensional and three-dimensional incompressible viscous flow. International Journal for Numerical Methods in Fluids 37(8), 865–884 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Pirzadeh, S.: Unstructured viscous grid generation by advancing layers method. In: AIAA 12th Computational Fluid Dynamics Conference (1993)

    Google Scholar 

  12. Pirzadeh, S.: Three-dimensional unstructured viscous grids by the advancing-layers method. AIAA Journal 34(1), 43–49 (1996)

    Article  MATH  Google Scholar 

  13. Taylor, C.A., Hughes, T.J.R., Zarins, C.K.: Finite element modeling of blood flow in arteries. Computer Methods in Applied Mechanics and Engineering 158(1-2), 155–196 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Yin, X., Han, W., Gu, X., Yau, S.-T.: The cutting pattern problem for tetrahedral mesh generation. In: Quadros, W.R. (ed.) Proceedings of the 20th International Meshing Roundtable, vol. 90, pp. 217–236. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Yin, X., Han, W., Gu, X., Yau, ST. (2014). Subdividing Prismatic Meshes by Cutting Flow. In: Zhang, Y.J., Tavares, J.M.R.S. (eds) Computational Modeling of Objects Presented in Images. Fundamentals, Methods, and Applications. CompIMAGE 2014. Lecture Notes in Computer Science, vol 8641. Springer, Cham. https://doi.org/10.1007/978-3-319-09994-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09994-1_19

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09993-4

  • Online ISBN: 978-3-319-09994-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics