Abstract
3D mapping is one of the most significant abilities for autonomous underwater vehicles (AUV). This paper proposes a 3D mapping algorithm for a robotic fish using two mechanical scanning sonars (MSSs) with one being forward-looking and the other downward-looking. Combined with inertial measurement unit (IMU), the forward-looking MSS is used for 2D SLAM (simultaneous localization and mapping) by which the 2D poses of the vehicle are optimally obtained by applying a pose-based GraphSLAM. Based on the estimated 2D poses, depth and orientation, the measurements from the downward-looking sonar are used to build the 3D map by adapting 3D mapping algorithm Octomap while taking into account the pose uncertainty. The effectiveness of the proposed algorithm is verified by extensive simulations which also show that it can generate more informative 3D map than the scenario where no uncertainty of poses is considered.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bulow, H., and Birk, A. Spectral registration of noisy sonar data for underwater 3D mapping. Autonomous Robots, 30(3), 307–331 (2011)
Ryde, J. and Hu, H. 3D Mapping with Multi-Resolution Occupied Voxel Lists, Autonomous Robots, Volume 28, Number 2, pages 169–185 (2010)
Wang, S., Chen, L., Hu, H., Xue, Z.B. and Pan, W. Underwater localisation and environmental mapping using wireless robots, Wireless Personal Communications, Vol. 70, pages 1147–1170, (2013)
Am Ende, B. A. 3D mapping of underwater caves. Computer Graphics and Applications, IEEE, 21(2), 14–20 (2001)
Fairfield, N., Kantor, G., and Wettergreen, D. Real-time SLAM with Octree evidence grids for exploration in underwater tunnels. Journal of Field Robotics, 24(1–2), 03–21 (2007)
Pizarro, O., Eustice, R., and Singh, H. Large area 3D reconstructions from underwater surveys. In OCEANS’04. MTTS/IEEE TECHNO-OCEAN’04 (Vol. 2, pp. 678–687) (2004)
Sedlazeck, A., Koser, K., and Koch, R. (2009, May). 3D reconstruction based on underwater video from ROV Kiel 6000 considering underwater imaging conditions. In IEEE OCEANS 2009-EUROPE, 1–10 (2009)
Bulow, H., Birk, A., and Unnithan, V. Online generation of an underwater photo map with improved Fourier Mellin based registration. In IEEE OCEANS 2009-EUROPE 1–6 (2009)
Lee, T. S., Choi, J. S., Lee, J. H., and Lee, B. H. (2009, October). 3-D terrain covering and map building algorithm for an AUV. IEEE/RSJ International Conference on Intelligent Robots and Systems, 4420–4425 (2009)
Castellani, U., Fusiello, A., Murino, V., Papaleo, L., Puppo, E., Repetto, S., and Pittore, M. Efficient on-line mosaicing from 3D acoustical images. In OCEANS’04. MTTS/IEEE TECHNO-OCEAN’04, 670–677 (2004)
Lorenson, A., and Kraus, D. 3D-Sonar image formation and shape recognition techniques. In IEEE OCEANS 2009-EUROPE, 1–6 (2009)
Liu, J. and Hu, H. Biological Inspiration: From Carangiform Fish to Multi-joint Robotic Fish, Journal of Bionic Engineering, Vol. 7, No. 2, pages 35–48 (2010)
Castellani, U., Fusiello, A., and Murino, V. Registration of multiple acoustic range views for underwater scene reconstruction. Computer Vision and Image Understanding, 87(1), 78–89 (2002)
Pathak, K., Birk, A., Vaskevicius, N., Pfingsthorn, M., Schwertfeger, S., and Poppinga, J. Online three-dimensional SLAM by registration of large planar surface segments and closed-form pose-graph relaxation. Journal of Field Robotics, 27(1), 52–84 (2010)
Chen, L., Wang, S., Hu, H., Pose-based GraphSLAM Algorithm for Robotic Fish with a Mechanical Scanning Sonar, Proc. of IEEE Int. Conf. on Robotics and Biomimetics, Shenzhen, China, 12–14 December 2013, 38–43 (2013)
Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C., and Burgard, W. OctoMap: an efficient probabilistic 3D mapping framework based on octrees. Autonomous Robots, 1–18 (2013)
Ribas, D., Ridao, P., Tardos, J. D., and Neira, J. Underwater SLAM in man-made structured environments. Journal of Field Robotics, 25(11–12), 898–921 (2008)
Thrun, S., Martin, C., Liu, Y., Hahnel, D., Emery-Montemerlo, R., Chakrabarti, D., and Burgard, W. A real-time expectation-maximization algorithm for acquiring multiplanar maps of indoor environments with mobile robots. IEEE Transactions on Robotics and Automation, 20(3), 433–443 (2004)
Surmann, H., Nuchter, A., Lingemann, K., and Hertzberg, J. 6D SLAM with approximate data association. In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), 242–249 (2005)
Burguera, A., Gonzalez, Y., and Oliver, G. The UspIC: Performing scan matching localization using an imaging sonar. Sensors, 12(6), 7855–7885 (2012)
Kaess, M., Ranganathan, A., and Dellaert, F. iSAM: Incremental smoothing and mapping. IEEE Transactions on Robotics, 24(6), 1365–1378 (2008)
Kuemmerle, R., Grisetti, G., Strasdat, H., Konolige, K., and Burgard, W. g2o: A general framework for graph optimization. In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), 3607–3613 (2011)
Doucet, A., and Johansen, A. M. A tutorial on particle filtering and smoothing: Fifteen years later. Handbook of Nonlinear Filtering, 12, 656–704 (2009)
Robot Operating System, http://www.ros.org/wiki/.
3D simulator-Gazebo, http://www.ros.org/wiki/gazebo.
Acknowledgments
This research is financially supported by the research grant “ECROBOT: European and Chinese Platform for Robotics and Applications,” FP7-PEOPLE-2012-IRSES, PEOPLE MARIE CURIE ACTIONS, International Research Staff Exchange Scheme 2013-2015.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Chen, L., Wang, S., Hu, H., Ryuh, Ys., Yang, GH. (2016). 3D Mapping by a Robotic Fish with Two Mechanical Scanning Sonars. In: Menegatti, E., Michael, N., Berns, K., Yamaguchi, H. (eds) Intelligent Autonomous Systems 13. Advances in Intelligent Systems and Computing, vol 302. Springer, Cham. https://doi.org/10.1007/978-3-319-08338-4_50
Download citation
DOI: https://doi.org/10.1007/978-3-319-08338-4_50
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08337-7
Online ISBN: 978-3-319-08338-4
eBook Packages: EngineeringEngineering (R0)