Skip to main content

Producibility in Hierarchical Self-assembly

  • Conference paper
Unconventional Computation and Natural Computation (UCNC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8553))

Abstract

Three results are shown on producibility in the hierarchical model of tile self-assembly. It is shown that a simple greedy polynomial-time strategy decides whether an assembly α is producible. The algorithm can be optimized to use O(|α| log2 |α|) time. Cannon, Demaine, Demaine, Eisenstat, Patitz, Schweller, Summers, and Winslow [4] showed that the problem of deciding if an assembly α is the unique producible terminal assembly of a tile system \(\mathcal{T}\) can be solved in \(O(|\alpha|^2 |\mathcal{T}| + |\alpha| |\mathcal{T}|^2)\) time for the special case of noncooperative “temperature 1” systems. It is shown that this can be improved to \(O(|\alpha| |\mathcal{T}| \log |\mathcal{T}|)\) time. Finally, it is shown that if two assemblies are producible, and if they can be overlapped consistently – i.e., if the positions that they share have the same tile type in each assembly – then their union is also producible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adleman, L.M., Cheng, Q., Goel, A., Huang, M.-D.A., Kempe, D., de Espanés, P.M., Rothemund, P.W.K.: Combinatorial optimization problems in self-assembly. In: Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Computing, STOC 2002, pp. 23–32 (2002)

    Google Scholar 

  2. Aggarwal, G., Cheng, Q., Goldwasser, M.H., Kao, M.-Y., de Espanés, P.M., Schweller, R.T.: Complexities for generalized models of self-assembly. SIAM Journal on Computing 34, 1493–1515 (2004); Preliminary version appeared in SODA 2004

    Google Scholar 

  3. Barish, R.D., Schulman, R., Rothemund, P.W.K., Winfree, E.: An information-bearing seed for nucleating algorithmic self-assembly. Proceedings of the National Academy of Sciences 106(15), 6054–6059 (2009)

    Article  Google Scholar 

  4. Cannon, S., Demaine, E.D., Demaine, M.L., Eisenstat, S., Patitz, M.J., Schweller, R.T., Summers, S.M., Winslow, A.: Two hands are better than one (up to constant factors). In: Proceedings of the Thirtieth International Symposium on Theoretical Aspects of Computer Science, STACS 2013, pp. 172–184 (2013)

    Google Scholar 

  5. Chen, H.-L., Doty, D.: Parallelism and time in hierarchical self-assembly. In: Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, pp. 1163–1182 (2012)

    Google Scholar 

  6. Thomas, H., Cormen, C.E., Leiserson, R.L.: Rivest, and Clifford Stein. In: Introduction to Algorithms. MIT Press (2001)

    Google Scholar 

  7. Demaine, E.D., Patitz, M.J., Rogers, T.A., Schweller, R.T., Summers, S.M., Woods, D.: The two-handed tile assembly model is not intrinsically universal. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 400–412. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  8. Doty, D.: Theory of algorithmic self-assembly. Communications of the ACM 55(12), 78–88 (2012)

    Article  Google Scholar 

  9. Doty, D., Lutz, J.H., Patitz, M.J., Schweller, R.T., Summers, S.M., Woods, D.: The tile assembly model is intrinsically universal. In: Proceedings of the 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012, pp. 302–310. IEEE (2012)

    Google Scholar 

  10. Doty, D., Patitz, M.J., Reishus, D., Schweller, R.T., Summers, S.M.: Strong fault-tolerance for self-assembly with fuzzy temperature. In: Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010, pp. 417–426. IEEE (2010)

    Google Scholar 

  11. Hopcroft, J., Tarjan, R.: Algorithm 447: Efficient algorithms for graph manipulation. Communications of the ACM 16(6), 372–378 (1973)

    Article  Google Scholar 

  12. Luhrs, C.: Polyomino-safe DNA self-assembly via block replacement. Natural Computing 9(1), 97–109 (2008), Preliminary version appeared in DNA 2008

    Google Scholar 

  13. Patitz, M.J.: An introduction to tile-based self-assembly. In: Durand-Lose, J., Jonoska, N. (eds.) UCNC 2012. LNCS, vol. 7445, pp. 34–62. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Schulman, R., Winfree, E.: Synthesis of crystals with a programmable kinetic barrier to nucleation. Proceedings of the National Academy of Sciences 104(39), 15236–15241 (2007)

    Article  Google Scholar 

  15. Schulman, R., Winfree, E.: Programmable control of nucleation for algorithmic self-assembly. SIAM Journal on Computing 39(4), 1581–1616 (2009), Preliminary version appeared in DNA 2004

    Google Scholar 

  16. Winfree, E.: Simulations of computing by self-assembly. Technical Report CaltechCSTR:1998.22. Institute of Technology, California (1998)

    Google Scholar 

  17. Winfree, E.: Self-healing tile sets. In: Chen, J., Jonoska, N., Rozenberg, G. (eds.) Nanotechnology: Science and Computation. Natural Computing Series, pp. 55–78. Springer (2006)

    Google Scholar 

  18. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394(6693), 539–544 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Doty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Doty, D. (2014). Producibility in Hierarchical Self-assembly. In: Ibarra, O., Kari, L., Kopecki, S. (eds) Unconventional Computation and Natural Computation. UCNC 2014. Lecture Notes in Computer Science(), vol 8553. Springer, Cham. https://doi.org/10.1007/978-3-319-08123-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08123-6_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08122-9

  • Online ISBN: 978-3-319-08123-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics