Abstract
We consider the problem of allocating clients to base stations in wireless networks. Two design decisions are the location of the base stations, and the power levels of the base stations. We model the interference due to the increased power usage resulting in greater serving radius, as capacities that are non-increasing with respect to the covering radius. We consider three models. In the first model the location of the base stations and the clients are fixed, and the problem is to determine the serving radius for each base station so as to serve a set of clients with maximum total profit subject to the capacity constraints of the base stations. In the second model, each client has an associated demand in addition to its profit. A fixed number of facilities have to be opened from a candidate set of locations. The goal is to serve clients so as to maximize the profit subject to the capacity constraints. In the third model the location and the serving radius of the base stations are to be determined. There are costs associated with opening the base stations, and the goal is to open a set of base stations of minimum total cost so as to serve the entire client demand subject to the capacity constraints at the base stations. We show that for the first model the problem is NP-complete even when there are only two choices for the serving radius, and the capacities are 1, 2. For the second model we give a 1/2-ε approximation algorithm. For the third model we give a column generation procedure for solving the standard linear programming model, and a randomized rounding procedure. We establish the efficacy of the column generation based rounding scheme on randomly generated instances.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aardal, K.: Capacitated facility location: Separation algorithms and computational experience. Math. Program. 81, 149–175 (1998)
de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, ch. 5, 3rd edn. Springer (2008) ISBN: 978-3-540-77973-5
Berman, O., Drezner, Z., Krass, D.: Generalized coverage: New developments in covering location models. Computers & Operations Research 37(10), 1675–1687 (2010)
Catrein, D., Imhof, L.A., Mathar, R.: Power control, capacity, and duality of uplink and downlink in cellular CDMA systems. IEEE Transactions on Communications 52(10), 1777–1785 (2004)
Chudak, F.A., Williamson, D.P.: Improved approximation algorithms for capacitated facility location problems. Math. Program. 102(2), 207–222 (2005)
Fisher, M.L., Nemhauser, G.L., Wolsey, L.A.: An analysis of the approximations for maximizing submodular set functions II. Mathematical Programming Study 8, 73–87 (1978)
Fleischer, L., Goemans, M.X., Mirrokni, V.S., Sviridenko, M.: Tight approximation algorithms for maximum general assignment problem. In: SODA, pp. 611–620 (2006)
Hanly, S.: Congestion measures in DS-CDMA networks. IEEE Transactions on Communications 47(3), 426–437 (1999)
Hochbaum, D.S., Maass, W.: Approximation schemes for covering and packing problems in image processing and VLSI. J. ACM 32(1), 130–136 (1985)
Holma, H., Toskala, A.: WCDMA for UMTS: HSPA Evolution and LTE, 4th edn. Wiley (2007) ISBN: 978-0470319338
Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the knapsack and sum of subsets problems. J. ACM 22, 463–468 (1975)
Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implementations, Revised edn. Wiley (1990) ISBN: 978-0471924203
Mulvey, J.M., Beck, M.P.: Solving capacitated clustering problems. European Journal of Operational Research 18(3), 339–348 (1984)
Radwan, A., Hassanein, H.: Capacity enhancement in CDMA cellular networks using multi-hop communication. In: Proceedings of the 11th IEEE Symposium on Computers and Communications, June 26-29, pp. 832–837. IEEE (2006)
Schrijver, A. Combinatorial Optimization, first ed., vol. A, part II. Springer, ch. 21, pp. 337–377. ISBN: 978-3540443896 (2003)
Tam, Y.H., Hassanein, H.S., Akl, S.G., Benkoczi, R.: Optimal multi-hop cellular architecture for wireless communications. In: Proceedings of the 31st IEEE Conference on Local Computer Networks, pp. 738–745 (November 2006)
Vondrak, J.: Optimal approximation for the submodular welfare problem in value oracle model. In: STOC, pp. 67–74 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Akl, S., Benkoczi, R., Gaur, D.R., Hassanein, H., Hossain, S., Thom, M. (2014). On a Class of Covering Problems with Variable Capacities in Wireless Networks. In: Pal, S.P., Sadakane, K. (eds) Algorithms and Computation. WALCOM 2014. Lecture Notes in Computer Science, vol 8344. Springer, Cham. https://doi.org/10.1007/978-3-319-04657-0_15
Download citation
DOI: https://doi.org/10.1007/978-3-319-04657-0_15
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-04656-3
Online ISBN: 978-3-319-04657-0
eBook Packages: Computer ScienceComputer Science (R0)