Abstract
In this paper, we propose to conduct inpainting and upsampling for defective depth maps when aligned color images are given. These tasks are referred to as the guided depth enhancement problem. We formulate the problem based on the heat diffusion framework. The pixels with known depth values are treated as the heat sources and the depth enhancement is performed via diffusing the depth from these sources to unknown regions. The diffusion conductivity is designed in terms of the guidance color image so that a linear anisotropic diffusion problem is formed. We further cast the steady state problem of this diffusion into the famous random walk model, by which the enhancement is achieved efficiently by solving a sparse linear system. The proposed algorithm is quantitatively evaluated on the Middlebury stereo dataset and is applied to inpaint Kinect data and upsample Lidar’s range data. Comparisons to the commonly used bilateral filter and Markov Random Field based methods are also presented, showing that our algorithm is competent.
This research work was supported in parts by the National Natural Science Foundation of China via grants 61001171, 61071219, 90820306, and Chinese Universities Scientific Fund.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barash, D.: Bilateral Filtering and Anisotropic Diffusion: Towards a Unified Viewpoint, HP Laboratories Israel, HPL-2000-18(R.1) (2000)
Bertalmio, M., Sapiro, G.: Image Inpainting. SIGGRAPH (2000)
Chan, T., Shen, J.: Mathematical Models for Local Non-texture Inpaintings. UCLA CAM TR 00-11 (2001)
Clarenz, U., Diewald, U., Rumpf, M.: Anisotropic Geometric Diffusion in Surface Processing. In: IEEE Conference on Visualization (2000)
Criminisi, A., Perez, P., Toyama, K.: Region filling and object removal by exemplar-based image inpainting. IEEE Transactions on Image Processing 13(9), 1–13 (2004)
Diebel, J., Thrun, S.: An Application of Markov Random Fields to Range Sensing. In: NIPS (2005)
Dolson, J., Baek, J., Plagemann, C., Thrun, S.: Upsampling Range Data in Dynamic Environments. In: CVPR (2010)
Grady, L.: Random Walks for Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(11), 1–17 (2006)
He, K., Sun, J., Tang, X.: Guided Image Filtering. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 1–14. Springer, Heidelberg (2010)
Janoch, A., Karayev, S., Jia, Y., Barron, J.T., Fritz, M., Saenko, K., Darrell, T.: A category-level 3-d object dataset: Putting the kinect to work. In: ICCV Workshops (2011)
Kim, G., Xing, E.P., Fei-Fei, L., Kanade, T.: Distributed Cosegmentation via Submodular Optimization on Anisotropic Diffusion. In: ICCV (2011)
Kim, S.-Y., Cho, J.-H., Koschan, A., Abidi, M.A.: Spatial and temporal enhancement of depth images captured by a time-of-flight depth sensor. In: ICPR (2010)
Larsson, S., Thomee, V.: Partial Differential Equations with Numerical Methods. Springer, Heidelberg (2003)
Liu, J., Gong, X., Liu, J.: Guided Inpainting and Filtering for Kinect Depth Maps. In: ICPR (2012)
Gong, X., Liu, J., Zhou, W., Liu, J.: Guided Depth Enhancement via A Fast Marching Method. Image and Vision Computing 31, 695–703 (2013)
Microsoft (2010), http://www.xbox.com/en-US/kinect/
Paris, S., Durand, F.: A fast approximation of the bilateral filter using a signal processing approach. International Journal of Computer Vision 99(3), 24–52 (2009)
Park, J., Kim, H., Tai, Y.-W., Brown, M.S., Kweon, I.: High Quality Depth Map Upsampling for 3DTOF Cameras. In: ICCV (2011)
Parker, R.: Kinect depth inpainting and filtering (2011), http://www.radfordparker.com/papers
Perona, P., Malik, J.: Scale-Space and Edge Detection Using Anisotropic Diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(7), 629–639 (1990)
Qi, F., Han, J., Wang, P., Shi, G., Li, F.: Structure Guided Fusion for Depth Map Inpainting. In: Pattern Recognition Letters (2012) (in press)
Scharstein, D., Pal, C.: On Learning conditional random fields for stereo. International Journal of Computer Vision 99(3), 319–337 (2007)
Telea, A.: An image inpainting technique based on the fast marching method. Journal of Graphics Tools 9(1), 25–36 (2004)
Tschumperle, D., Deriche, R.: Anisotropic Diffusion PDE’s for Multi-Channel Image Regularization: Framework and Applications. In: Advances in Imaging and Electron Physics, pp. 1–47 (2007)
Velodyne. Velodyne HDL-64E (2012), http://velodynelidar.com/lidar/
Wasza, J., Bauer, S., Hornegger, J.: Real-time Preprocessing for Dense 3D Range Imaging on the GPU: Defect Interpolation, Bilateral Temporal Averaging and Guided Filtering. In: Workshop in ICCV (2011)
Weickert, J.: Anisotropic Diffusion in Image Processing. ECMI Series. Teubner-Verlag (1998)
Wong, U., Garney, B., Whittaker, W., Whittaker, R.: Camera and lidar fusion for mapping of actively illuminated subterranean voids. In: Howard, A., Iagnemma, K., Kelly, A. (eds.) Field and Service Robotics. STAR, vol. 62, pp. 421–430. Springer, Heidelberg (2010)
Yang, Q., Yang, R., Davis, J., Nister, D.: Spatial-Depth Super Resolution for Range Images. In: CVPR (2007)
Zhang, J., Zheng, J., Cai, J.: A Diffusion Approach to Seeded Image Segmentation. In: CVPR (2010)
Zhu, J., Wang, L., Gao, J., Yang, R.: Spatial-Temporal Fusion for High Accuracy Depth Maps Using Dynamic MRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(5), 899–909 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer International Publishing Switzerland
About this paper
Cite this paper
Liu, J., Gong, X. (2013). Guided Depth Enhancement via Anisotropic Diffusion. In: Huet, B., Ngo, CW., Tang, J., Zhou, ZH., Hauptmann, A.G., Yan, S. (eds) Advances in Multimedia Information Processing – PCM 2013. PCM 2013. Lecture Notes in Computer Science, vol 8294. Springer, Cham. https://doi.org/10.1007/978-3-319-03731-8_38
Download citation
DOI: https://doi.org/10.1007/978-3-319-03731-8_38
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-03730-1
Online ISBN: 978-3-319-03731-8
eBook Packages: Computer ScienceComputer Science (R0)